• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 17
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 58
  • 58
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

AnÃlise de performance de sÃlitons Ãpticos espaÃo-temporais em guia planar com nÃo-linearidade cÃbico quintica periodicamente modulada e circuitos lÃgicos operando nos regimes Kerr instantÃneo e relaxado. / Performance analysis of the spatio-temporal optical solitons in a planar guide with cubic quintic nonlinearity periodically modulated and logic circuits operating in regimes Kerr instantaneous and relaxed.

Josà Wally MendonÃa Menezes 03 March 2010 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / Neste trabalho, a propagaÃÃo e estabilidade de sÃlitons espaÃo-temporais (ou sÃlitons balas) em um guia de onda planar com nÃo linearidade cÃbico quintica periodicamente modulada à apresentada em funÃÃo da amplitude de modulaÃÃo , da freqÃÃncia de modulaÃÃo e da distÃncia de propagaÃÃo . Com o objetivo de garantir a estabilidade e prevenir o colapso ou o espalhamento dos pulsos, exploramos a nÃo-linearidade cÃbico quintica com os campos Ãpticos acoplados por XPM (ModulaÃÃo de Fase Cruzada) e utilizando diversos valores para o parÃmetro nÃo-linear , para as amplitudes e freqÃÃncias de modulaÃÃo em funÃÃo da distÃncia de propagaÃÃo , provocamos a colisÃo de dois pulsos (campos Ãpticos) para garantir que estes sejam realmente sÃlitons e, apÃs estas anÃlises numÃricas, foi possÃvel mostrar a existÃncia de sÃlitons espaÃo-temporais estÃveis. Apresentamos, tambÃm, a anÃlise numÃrica de um acoplador triplo nÃo linear de fibras Ãpticas em uma estrutura planar simÃtrica e operando com o modelo Kerr instantÃneo e relaxado para geraÃÃo de portas lÃgicas Ãpticas. Para implementar estes circuitos, usamos um pulso de controle CP com uma diferenÃa de fase entre as entradas âI1â e âI2â do acoplador e analisamos as caracterÃsticas de transmissÃo, taxa de extinÃÃo em funÃÃo da diferenÃa de fase, a largura normalizada (LN), a figura de mÃrito para portas lÃgicas FOMELG(dB) e a evoluÃÃo dos pulsos ao longo do acoplador e, assim, foi demonstrado as possibilidades para geraÃÃo das portas lÃgicas Ãpticas. / In this work, the propagation and stability of spatiotemporal optical solitons (or optical bullets) in a planar waveguide with periodically modulated cubic-quintic nonlinearity is presented numerically as a function of the amplitudes of modulation , the frequency of modulation and the propagation distance .With the objective of ensure the stability and preventing the collapse or the spreading of pulses, in this study we explore the cubic-quintic nonlinearity with the optical fields coupled by XPM (Cross-Phase Modulation) and take into account several values for the nonlinear parameter , for amplitudes and frequency of modulation as a function of the propagation distance , we cause the collisions of two pulses (envelope of the optical field) to ensure that the optical pulse are sÃlitons and, after numerical analysis was possible shown the existence of stable spatiotemporal optical sÃliton. We also have presented the numerical analysis of the three-core nonlinear fiber coupler in a symmetrical planar structure and operating with instantaneous and relaxed Kerr model for generation of the all-optical logic gates. To implement this optical circuit, we used a control pulse CP with a phase difference between the inputs âI1â and âI2â of the fiber coupler and were analyzed the transmission characteristics, the Extinction Ratio as a function of the phase difference, the length normalized (LN), the figure-of-merit of the logic gates (FOMELG (dB) and the pulse evolution along the fiber coupler and, thus, ensure were demonstrated the possibilities for generating of the all-optical logic gates.
52

Deconvoluting charge trapping and nucleation interplay in FeFETs: Kinetics and Reliability

Pesic, Milan, Padovani, Andrea, Slesazeck, Stefan, Mikolajick, Thomas, Larcher, Luca 07 December 2021 (has links)
Discovery of ferroelectric (FE) behavior in HfO 2 removed the compatibility roadblocks between the state-of-the-art CMOS and FE memories. Even though FE FETs (FeFETs) are scaled into 22 nm nodes and beyond, the limits of the technology as well as the physical mechanisms and reliability are still under research. In this paper we successfully developed a multiscale modeling platform to understand the interplay between the FE switching and charge trapping. Starting from the nucleation theory and rigorous charge transport modeling we present for the first time a self-consistent modeling framework we used for investigation of reliability and variability in FeFETs.
53

Nové techniky návrhu celulárních automatů / New Cellular Automata Design Techniques

Baláž, Martin January 2013 (has links)
The aim of this master thesis is to introduce a new technique for the design of cellular automata which will provide a better possibilities for the implementation and solving given problems in an environment of non-uniform automata. In this work, the theoretical foundations of cellular automata have been summarized and the possibilities of their design were examined using two evolutionary principles that have commonly been used - genetic algorithm and cellular programming. Two principally different issues were selected on which the possibilities and capabilities of these techniques were proven: the synchronization problem and the system of implementation of logic gates in an environment of cellular automata. Based on a review of the implementation properties and the initial results of usage of these methods a new design method for cellular automata was created - cellular evolution. The cellular evolution with its method of "prediction of the future state of surrounding cells" provides new possibilities in the design of cellular automata since it operates with structured genes which allow the gene to be active for a variety of cellular surroundings. In the conclusion of this work, all three methods were compared on two selected problems and their abilities were summarized in a detailed overview.
54

Eliminating Charge Sharing in Clocked Logic Gates on the Device Level Employing Transistors with Multiple Independent Inputs

Trommer, Jens, Simon, Maik, Slesazeck, Stefan, Weber, Walter M., Mikolajick, Thomas 23 June 2022 (has links)
Charge sharing poses a fundamental problem in the design of dynamic logic gates, which is nearly as old as digital circuit design itself. Although, many solutions are known, up to now most of them add additional complexity to a given system and require careful optimization of device sizes. Here we propose a simple CMOS-technology compatible transistor level solution to the charge sharing problem, employing a new class of field effect transistors with multiple independent gates (MIGFETs). Based on mixed-mode simulations in a coordinated device-circuit co-design framework, we show that their underlying device physics provides an inherent suppression of the charge sharing effect. Exemplary circuit layouts as well as discussion on the switching performance are given.
55

A Novel Approach for Cancelation of Nonaligned Inter Spreading Factor Interference in LoRa Systems

Zhang, Qiaohan, Bizon, Ivo, Kumar, Atul, Martinez, Ana Belen, Chafii, Marwa, Fettweis, Gerhard 22 April 2024 (has links)
Long Range (LoRa) has become a key enabler technology for low power wide area networks. However, due to its ALOHA-based medium access scheme, LoRa has to cope with collisions that limit the capacity and network scalability. Collisions between randomly overlapped signals modulated with different spreading factors (SFs) result in inter-SF interference, which increases the packet loss likelihood when signal-to-interference ratio (SIR) is low. This issue cannot be resolved by channel coding since the probability of error distance is not concentrated around the adjacent symbol. In this paper, we analytically model this interference, and propose an interference cancellation method based on the idea of segmentation of the received signal. This scheme has three steps. First, the SF of the interference signal is identified, then the equivalent data symbol and complex amplitude of the interference are estimated. Finally, the estimated interference signal is subtracted from the received signal before demodulation. Unlike conventional serial interference cancellation (SIC), this scheme can directly estimate and reconstruct the non-aligned inter-SF interference without synchronization. Simulation results show that the proposed method can significantly reduce the symbol error rate (SER) under low SIR compared with the conventional demodulation. Moreover, it also shows high robustness to fractional sample timing offset (STO) and carrier frequency offset (CFO) of interference. The presented results clearly show the effectiveness of the proposed method in terms of the SER performance.
56

Designing Efficient Circuits Based on Runtime-Reconfigurable Field-Effect Transistors

Rai, Shubham, Trommer, Jens, Raitza, Michael, Mikolajick, Thomas, Weber, Walter M., Kumar, Akash 26 November 2021 (has links)
An early evaluation in terms of circuit design is essential in order to assess the feasibility and practicability aspects for emerging nanotechnologies. Reconfigurable nanotechnologies, such as silicon or germanium nanowire-based reconfigurable field-effect transistors, hold great promise as suitable primitives for enabling multiple functionalities per computational unit. However, contemporary CMOS circuit designs when applied directly with this emerging nanotechnology often result in suboptimal designs. For example, 31% and 71% larger area was obtained for our two exemplary designs. Hence, new approaches delivering tailored circuit designs are needed to truly tap the exciting feature set of these reconfigurable nanotechnologies. To this effect, we propose six functionally enhanced logic gates based on a reconfigurable nanowire technology and employ these logic gates in efficient circuit designs. We carry out a detailed comparative study for a reconfigurable multifunctional circuit, which shows better normalized circuit delay (20.14%), area (32.40%), and activity as the power metric (40%) while exhibiting similar functionality as compared with the CMOS reference design. We further propose a novel design for a 1-bit arithmetic logic unit-based on silicon nanowire reconfigurable FETs with the area, normalized circuit delay, and activity gains of 30%, 34%, and 36%, respectively, as compared with the contemporary CMOS version.
57

Moderní metody modelování a simulace elektronických obvodů / Advanced Electronic Circuits Simulation Methods

Kocina, Filip January 2017 (has links)
Disertační práce se zabývá simulací elektronických obvodů. Popisuje metodu kapacitorové substituce (CSM) pro převod elektronických obvodů na elektrické obvody, jež mohou být následně řešeny pomocí numerických metod, zejména Moderní metodou Taylorovy řady (MTSM). Tato metoda se odlišuje automatickým výběrem řádu, půlením kroku v případě potřeby a rozsáhlou oblastí stability podle zvoleného řádu. V rámci disertační práce bylo autorem disertace vytvořeno specializované programové vybavení pro řešení obyčejných diferenciálních rovnic pomocí MTSM, s mnoha vylepšeními v algoritmech (v porovnání s TKSL/386). Tyto algoritmy zahrnují zjednodušování obecných výrazů na polynomy, paralelizaci nezávislou na integrační metodě atp. Tento software běží na linuxovém serveru, který komunikuje pomocí protokolu TCP/IP. Toto vybavení bylo úspěšně použito pro simulaci VLSI obvodů, jejichž řešení pomocí CSM bylo značně rychlejší a spotřebovávalo méně paměti než state-of-the-art SPICE.
58

ImplementaÃÃo de portas lÃgicas atravÃs da modulaÃÃo de pulsos por posiÃÃo (PPM) em filtros acÃstico-Ãpticos sintonizÃveis. / Implementation of optic gates through the pulse position modulation (PPM) in acoustic optical tunable filter (AOTF)

Clauson Sales do Nascimento Rios 13 July 2006 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / Nesta dissertaÃÃo foi estudada a aplicaÃÃo do filtro AcÃstico-Ãptico SintonizÃvel (AOTF), com a ModulaÃÃo de Pulsos por PosiÃÃo (PPM), objetivando implementar, utilizando o mÃtodo de Runge-Kutta de 4a ordem, portas lÃgicas (OR-OU e AND-E) Ãpticas operando com pulsos de luz ultracurtos (2ps). Neste trabalho à investigado o desempenho das portas considerando vÃrios comprimentos do filtro ( L) que integra a sua estrutura interna, com o intuito de obter o comprimento de filtro mais adequado para uma operaÃÃo satisfatÃria, em regime dispersivo, nÃo linear, sem perdas e com modulaÃÃo de fase cruzada (XPM). Esta investigaÃÃo à realizada em duas situaÃÃes: primeiramente, sÃo considerados filtros com automodulaÃÃo de fase (SPM) e GVD (dispersÃo da velocidade de grupo). Em um segundo momento, as mesmas portas sÃo obtidas com efeitos SPM, XPM e GVD agindo juntos no AOTF. Foi observado que para pulsos do tipo sÃliton, os efeitos da dispersÃo, da nÃo linearidade e da modulaÃÃo de fase cruzada exercem juntos uma forte influÃncia na propagaÃÃo do mesmo, provocando a quebra do pulso na saÃda do dispositivo quando utilizamos um comprimento maior para os filtros. Para dispositivos mais curtos, o pulso chaveado apresentou compressÃes e alargamentos temporais e espectrais, bem comodeslocamentos temporais nos dois modo de propagaÃÃo (TE e TM). ApÃs a escolha de um comprimento de filtro adequado, foi selecionado um deslocamento temporal Ãtimo a ser aplicado nos pulsos de entrada para conseguirmos, na saÃda da porta lÃgica, deslocamentos temporais satisfatÃrios (acertos) na aplicaÃÃo da modulaÃÃo PPM. Em seguida, introduzimos fases em um dos pulsos de entrada (TM), provocando um defasamento entre os pulsos TE e TM, reduzindo ainda mais a margem de erro PPM de operaÃÃo das portas. Finalmente, ao analisarmos as fases aplicadas no pulso TM (0 a 2), definirmos o melhor Ãngulo de fase para que as portas operem na regiÃo de acerto da modulaÃÃo PPM. / In this dissertation it was studied the application of the Acoustic Optical Tunable Filter (AOTF), with Pulse Position Modulation (PPM), aiming at to implement, using the method of Runge-Kutta of 4a order, logical gates (OR and AND) optical operating with pulses of light ultra shorts (2ps). In this work the acting of the gates is investigated, considering several lengths of the filter (  L) that integrates your internal structure, with the intention of obtaining the length of more appropriate filter for a satisfactory operation, in dispersion regime, nonlinear, without losses and with Cross Phase Modulation (XPM). This investigation is accomplished in two situations: firstly, filters are considered with Self Phase Modulation (SPM) and GVD (group-velocity dispersion). In a second moment, the same gates are obtained with effects SPM, XPM and GVD, acting together in AOTF. It was observed that for pulses of the type soliton, the effects of the dispersion, of the nonlinearity and of the cross phase modulation exercise together a strong influences in the propagation of the same, provoking the break of the pulse in the exit of the device when we used a larger length for the filters. For shorter devices, the switched pulse presented temporary and spectral compression and spread, as well as, displacement in the time in the two propagation modes (TE and TM). After the choice of a length of appropriate filter, a great temporary displacement was selected to be applied in the input pulses for us to get, in the exit of the logical gate, satisfactory temporary displacements (successes) in the application of the PPM modulation. Soon after, we introduced phases in one of the entrance pulses (TM), provoking a phase displacement among TE and TM pulses, still reducing more the margin of error PPM of operation of the gates. Finally, to the we analyze the applied phases in the pulse TM (0 to 2), we defined the best phase angle for the gates to operate in the success area of the PPM modulation.

Page generated in 0.0532 seconds