21 |
Statistical Inference of Defect Population for the Study and Simulation of the Low-Cycle Fatigue of a Cast Aluminium Alloy. / Inférence statistique de la population de défauts pour l'étude et la simulation de la fatigue oligocyclique d'un alliage d'aluminium de fonderieWilson, Pablo 17 January 2017 (has links)
Dans une optique d'allègement, les alliages d'aluminium de fonderie représentent une excellente solution technique. Ainsi, pour les culasses automobiles, les alliages d'aluminium Al-Si-Cu (Aluminium-Silicium-Cuivre) sont souvent choisis pour leurs performances mécaniques ainsi que leur bonne coulabilité. L'objectif de cette étude est d'améliorer la compréhension des mécanismes en fatigue oligocyclique pour définir un critère de fatigue adapté. Cet objectif est réalisé en combinant des essais (en fatigue oligocyclique à température ambiante et élevée), de nombreuses observations (microscopie à balayage électronique, microtomographie 3D rayons-X de laboratoire, suivi de fissure) et des simulations (génération de population de défauts et calculs éléments finis). À l'aide d'outils spécialement développés, la population de défauts (défauts de fonderie) est analysée en détails : la taille de défaut est modélisée par une distribution de Pareto généralisée et leurs positions par un processus ponctuel de type agrégé (démontrant que les défauts ne sont pas spatialement distribués de manière totalement aléatoire). Les processus ponctuels marqués permettent de montrer que tailles et positions de défauts ne sont pas corrélées. En utilisant ces informations statistiques, il est démontré que seuls les défauts proches de la surface sont critiques pour la fatigue oligocyclique. Un critère de fatigue basé sur l'énergie de déformation est utilisé pour prévoir la durée de vie en fatigue. Par la suite, un modèle de propagation de fissure permet de prendre en compte la taille de défaut dans la prévision de la durée de vie. Combiné à la statistique des défauts, ce modèle permet d'estimer la dispersion des essais. En dernier lieu, des essais et des simulations sur éprouvettes entaillées montrent que l'étude de la population de défauts est d'autant plus critique que le volume fortement sollicité mécaniquement devient plus faible. / In a search for lightweight materials, cast aluminium alloys have become an efficient solution for the automotive industry. For cylinder heads, cast aluminium alloys (Aluminium-Silicon-Copper based) are often chosen for their mechanical performances combined with their good casting abilities. This study aims at better understanding the damage mechanisms of Low-Cycle Fatigue (LCF) to help define a suitable design criterion. This is achieved by combining experiments (LCF tests at ambient and high temperature), various observations (Scanning electron microscopy, laboratory 3D X-ray microtomography, crack propagation monitoring) and numerical techniques (Finite element method simulations and defect population generation). Specifically designed statistical tools allow clearly identifying the defect (casting defects) population: the defect size can be modelled by a generalized Pareto distribution and their positions by a clustered point process (thus showing the defect locations are not completely random). Using marked point processes, it is also shown that defect size and defect position are uncorrelated. Using this statistical information and by systematic observations, it is proven that only defects close to the surface are critical for the fatigue life. The different interactions between cracks and defects are also studied, especially with respect to temperature. A strain energy based fatigue criterion is introduced and allows estimating the fatigue life. Then, a crack propagation model provides a mean of taking the defect size into account, which combined with the statistics of defects, gives an estimate of the fatigue life dispersion. Finally, notched specimens tests and simulations show the study of the defect population is even more critical as the highly loaded volume becomes smaller.
|
22 |
Etude comparative de la tenue mécanique des joints soudés des réservoirs sous pression de deux aciers inoxydables super austénitique et duplex. / A Comparative Study of the Mechanical Properties of Superaustenitic and Duplex Welded Joints in Pressure VessesKchaou, Yacine 09 June 2015 (has links)
Cette Thèse a porté sur l’étude en fatigue oligocyclique et en fissuration des joints soudés des aciers inoxydables superausténitique (Alloy28) et duplex (UNS S32550). L’effet de la présence du joint soudé dans la structure a été examiné.La première étape de ce travail a consisté à étudier le comportement monotone et cyclique du métal de base et du métal d’apport de chaque nuance d’acier inoxydable de l’étude. Les lois de comportement à température ambiante ont été ainsi identifiées.Des essais de fatigue oligocyclique sous différents niveaux de déformation imposée ont été effectués sur les aciers inoxydables et leurs joints soudés. Les résultats indiquent que la durée de vie des soudures est plus faible que celle du métal de base. Les analyses des mécanismes d’endommagement montrent que la durée de vie réduite des joints soudés est attribuée à l’accélération de la phase d’amorçage.Enfin, les essais de propagation de fissure sur l’Alloy28 montrent que le rapport de charge a un effet sur la cinétique de propagation dû au phénomène de fermeture par rugosité et par plasticité. Les vitesses de propagation de fissure dans le métal d’apport sont très similaires à ceux du métal de base. Ceci est dû à la compensation de plusieurs effets comme le phénomène de fermeture, la rugosité et les contraintes résiduelles. L’acier inoxydable duplex ne présente pas d’effet de rapport de charge sur la cinétique de fissuration. Les vitesses de propagation de fissure du métal d’apport sont aussi comparables à celles du métal de base. / This thesis focused on the study of low cycle fatigue and crack growth of welded joints of superaustenitic (Alloy28) and Duplex (UNS S32550) stainless steels. The effect of the presence of the welded joint in the structure was also examined.The first part of this work was to study the monotonous and cyclic behavior of the base metal and weld metal of each stainless steel. The behavior laws of each material were identified at room temperature.Low cycle fatigue tests at different levels of deformation were performed on stainless steels and their welded joints. The results indicate that the fatigue life of welded joints is lower than the base metal. The analyses of damage mechanisms show that the short life of welded joints is attributed to the acceleration of the initiation phase.Finally, crack propagation tests in Alloy28 stainless steel show that load ratio has an effect on the crack growth rate due to the closure phenomenon by roughness and plasticity. The crack growth rate in the weld metal is very similar to that of the base metal. This is due to the compensation of various effects such as the roughness, the residual stress and the closure phenomenon. The duplex stainless steel does not present load ratio effect on the crack growth rate. The crack growth rates of the weld metal of the duplex stainless steel are also comparable to those of the base metal.
|
23 |
Evaluation of Strength Reduction Factor for Concentrically Braced Frames Based on Nonlinear Single Degree-of-Freedom SystemsSlein, Ryan Michael 01 March 2016 (has links)
Strength Reduction Factor (R-Factor), often referred to as Response Modification Factor, is commonly used in the design of lateral force resisting systems under seismic loading. R-Factors allow for a reduction in design base shear demands, leading to more economical designs. The reduction of strength is remedied with ductile behavior in members of proper detailing. Modern seismic codes and provisions recommend R-Factors for many types of lateral force resisting systems. However these factors are independent of the system fundamental frequency and many other important system properties, resulting in factors that may result in an unfavorable seismic response. To evaluate the validity of prescribed R-Factors an extensive analytical parameter study was conducted using a FEM single degree-of-freedom Concentrically Braced Frame (CBF) under incremental dynamic analysis over a suite of ground motions. Parameters of the study include brace slenderness, fundamental frequency, increment resolution, FEM mesh refinement, effects of leaning columns, and effects of low-cycle fatigue. Results suggest that R-Factor can vary drastically for CBF systems with differing properties.
|
24 |
Využití techniky orientovaných fólií v TEM / Application of Technique of Oriented Foils in TEMBuček, Petr January 2009 (has links)
The master’s thesis is focused on the application of the technique of oriented foils in transmission electron microscopy. Dislocation structures were identified by this technique in both phases of polycrystalline austenitic-ferritic stainless steel SAF 2507 formed during low cycle fatigue at two plastic strain amplitudes ap. In individual grains the stress axis and the Schmid factors of active slip systems were determined. In austenitic grains, the planar structures were determined at both ap. In ferritic grains, the dislocation arrangement was different for the two observed ap. Individual screw dislocations and pile-up´s of edge dislocations were found at low ap = 1x10-4. Mixture of vein and wall dislocation structures were formed at high ap = 2x10-3. Observed dislocation structures were discussed in relation with the cyclic plastic response of the duplex stainless steel.
|
25 |
Evaluating the Effect of Decking Fasteners on the Seismic Behavior of Steel Moment Frame Plastic Hinge RegionsToellner, Bradley W. 06 June 2013 (has links)
A series of full-scale beam-to-column moment connection tests were completed to determine the effects of powder actuated fasteners (PAF) and puddle welds on the seismic behavior of steel moment connections. In seismic regions, PAF are currently prohibited in the connection region (referred to as the protected zone) due to the concern of low-cycle fatigue fracture. There is almost no information available in the literature regarding the seismic behavior of moment connections with PAF or puddle welds.
Full-scale connection testing is the most accurate way to investigate the behavior of different moment connections with common defects and fasteners applied in the protected zone. However, it is cost prohibitive to conduct full-scale testing programs that are sufficiently comprehensive to investigate a wide range of defect types, severity, and locations. For this reason, it is desired to develop alternative methods of investigation. A finite element (FE) model capable of simulating both the global deformation patterns and local buckling effects in a moment connection has been developed. Validated FE models will allow for further evaluation through numerical simulation of additional configurations. Furthermore, alternate, more economical, test configurations to experimentally investigate the effect of defects on steel moment connections were explored. This report discusses the full-scale test setup, results and analysis of completed experimental testing, the development of an FE connection model, and the preliminary development of alternate test configurations. / Master of Science
|
26 |
Effect of boron and hydrogen on microstructure and mechanical properties of cast Ti-6Al-4VGaddam, Raghuveer January 2011 (has links)
Titanium and its alloys are widely used in applications ranging from aeroengines and offshore equipment to biomedical implants and sporting goods, owing to their high ratio of strength to density, excellent corrosion resistance, and biomedical compatibility. Among the titanium alloys used in aerospace, Ti-6Al-4V (an α+β alloy) is the most widely used, in applications in which the temperature may reach 350°C, at which point it retains good fatigue and fracture properties as well as moderate tensile strength and ductility. These alloy properties are dependent on variables such as crystalline structure, alloy chemistry, manufacturing techniques and environmental conditions during service. These variables influence the microstructure and mechanical properties of titanium alloys. With regard to the alloy chemistry and operating environment, the focus of the present work is to understand the influence of boron and hydrogen on the microstructure and selected mechanical properties of cast Ti-6Al-4V. The addition of boron to cast Ti-6Al-4V (0.06 and 0.11 wt% in this work) refines the coarse “as cast” microstructure, which is evaluated quantitatively using FoveaPro image analysis software. Compression testing was performed using a Gleeble 1500 instrument, by applying a 10% strain at different strain rates (0.001, 0.1 and 1 s-1) for temperatures in the range 25-1100°C. The tests were performed to evaluate the effect of boron on the mechanical properties of the alloy. It was observed that there is an increase in the compressive strength, predominantly at room temperature, of cast Ti-6Al-4V after the addition of boron. Metallographic evaluation showed that this increase in strength is a likely result of reductions in both the prior β grain and α colony dimensions, which is caused by boron addition. Studies in a hydrogen environment at 150 bar showed that cast Ti-6Al-4V exhibited lower yield strength and lower ultimate tensile strength in comparison with those properties measured in an air environment. No significant change in the ductility was observed. It was also noted that in a high strain range (≈2%) the low cycle fatigue (LCF) life was significantly reduced in hydrogen compared with air. Microstructural and fractographic characterization techniques were used to establish the role of hydrogen on the deformation mechanism by analysing the crack propagation path through the microstructure. It is seen that cracks tend to propagate along the interface between prior β grain boundaries and/or along the α colony boundaries
|
27 |
Evaluating the Fracture Potential of Steel Moment Connections with Defects and RepairsStevens, Ryan T. January 2020 (has links)
Steel moment frames are a popular seismic-force resisting system, but it is believed that they are susceptible to early fracture if there is a stress concentration in the plastic hinge region, also known as the protected zone. If a defect is present in this area, it may be repaired by grinding and/or welding, but little research has investigated how the repairs affect the performance of full-scale moment connections subjected to inelastic rotations. Thus, the goals of this research were to establish the performance of full-scale moment connections with repairs and defects, then develop a method for predicting fracture of the full-scale specimens using more economical cyclic bend tests. To do this, six full-scale reduced beam section (RBS) connections were tested having arrays of repairs or defects applied to the flanges. The repairs were 0.125 in. deep notches ground to a smooth taper and 0.25 in. deep notches ground to a smooth taper, welded, and ground smooth. The defects were sharp 0.25 in. and 0.375 in. notches. In addition, 54 bend tests were conducted on beam flange and bar stock coupons having the same repairs and defects, power actuated fasteners, puddle welds, and no artifacts. Finally, Coffin-Manson low-cycle fatigue relationships were calibrated using results from the cyclic bend tests with each artifact (repair, defect, or attachment method) and used in conjunction with estimates of full-scale plastic strain amplitudes to predict fracture of full-scale specimens. All four of the full-scale moment connections with repairs satisfied special moment frame qualification criteria (SMF). One full-scale specimen with sharp 0.25 in. notches satisfied SMF qualification criteria, but the flexural resistance dropped rapidly after the qualification cycle. On the other hand, the specimen with sharp 0.375 in. notches did not satisfy SMF qualification criteria due to ductile fractures propagating from the notches. The proposed method for predicting fracture of full-scale connections was validated using the six current and six previous full-scale RBS specimens. This method underpredicted fracture for eleven of the twelve specimens. The ratio of the actual to predicted cumulative story drift at fracture had a mean of 1.13 and a standard deviation of 0.19. / M.S. / Moment connections in steel structures resist earthquake loads by permanently deforming the material near the connection. This area is called the protected zone and is critical to the safety of the structure in an earthquake. Due to this importance, no defects are allowed near the connection, which can include gouges or notches. If a defect does occur, it must repaired by a grinding or welding. These are the required repair methods, but there have be no tests to determine how the repairs affect the strength and ductility of the connection. This research tested six full-scale moment connections with defects repaired by grinding and welding, as well as unrepaired defects. A correlation was also developed and validated between the full-scale tests and small-scale bend tests of steel bars with the same defects and repairs. This relationship is valuable because the small-scale tests are quicker and less expensive to conduct than the full-scale tests, meaning other defects or repairs could be easily tested in the future. All but one of the six full-scale specimens met the strength requirements and had adequate ductility. The one test specimen that failed had an unrepaired defect. The relationship between the full-scale and small-scale tests underpredicted fracture (a conservative estimate) for the five of the full-scale tests and overpredicted fracture (unconservative estimate) for one test.
|
28 |
Extrapolation Techiques for Very Low Cycle Fatigue Behavior of a Ni-base SuperalloyDaubenspeck, Brian R. 01 January 2010 (has links)
This thesis describes innovative methods used to predict high-stress amplitude, low cycle fatigue (LCF) behavior of a material commonly used in gas turbine blade design with the absence of such data. A combination of extrapolation and estimation techniques from both prior and current studies has been explored with the goal of developing a method to accurately characterize such high-temperature fatigue of IN738LC, a dual-phase Ni-base superalloy. A method capable of predicting high-stress (or strain) amplitude fatigue from incessantly available low-stress amplitude, high cycle fatigue (HCF) would lower the costs of inspection, repair, and replacement on certain turbine components. Three sets of experimental data at different temperatures are used to evaluate and examine the validity of extrapolation methods such as anchor points and hysteresis energy trends. Stemming from extrapolation techniques developed earlier by Coffin, Manson, and Basquin, the techniques exercised in this study purely implement tensile test and HCF data with limited plastic strain during the estimation processes. A standard practice in engineering design necessitates mechanical testing closely resembling planned service conditions; for design against fatigue failure, HCF and tensile data are the experiments of choice. High stress amplitude data points approaching the ultimate strength of the material were added to the pre-existing HCF base data to achieve a full-range data set that could be used to test the legitimacy of the different prediction methods. While some methods proved to be useful for bounding estimates, others provided for superior estimation.
|
29 |
Extrémně nízkocyklová únavová životnost slitin neželezných kovů / Extremely low cycle fatigue life of non-ferrous alloysJudas, Jakub January 2019 (has links)
This thesis is focused on fatigue behaviour of aluminium alloy 2024-T351 in low cycle and extremely low cycle fatigue regime. Test specimens were firstly subjected to quasi-static tensile and compression tests to establish basic mechanical properties of the experimental material. Fatigue tests were conducted in strain-control mode, when cyclic plastic response and S-N curves were determined. All of the experiments were conducted at room temperature. Shapes of mechanical hysteresis loops are dependent on the strain amplitude and clearly exhibit cyclic plasticity of the alloy. Cyclic deformation curve was fitted by power regression function and subsequently compared with the tensile test. Experimental data of the S-N curves were fitted by Manson-Coffin and Wöhler-Basquin law. The discrepancy of the fatigue data was observed in the extremely low cycle fatigue regime. Based on this phenomenon, new regression function was used to overcome shortening of fatigue life in the extremely low cycle regime.
|
30 |
Propriedades mecânicas de tração e fadiga de chapa fina de um aço livre de intersticiais / Monotonic and fatigue properties of thin sheet of an interstitial free steelMilan, Marcelo Tadeu 18 June 1999 (has links)
Neste trabalho foram determinadas as propriedades monotônicas e de fadiga de baixo-ciclo em chapa fina de um aço livre de intersticiais (aço IF) com adição de titânio, utilizado na indústria automobilística. Os ensaios de fadiga foram realizados sob controle de deformação com Rε = -1 e com o auxílio de um sistema de alinhamento de garras. O material apresenta diferentes comportamentos de fadiga nas direções transversal e longitudinal (em relação à direção de laminação). Comparação entre a curva tensão-deformação monotônica e a curva tensão-deformação cíclica mostra que os corpos de prova transversais têm endurecimento cíclico para as amplitudes de deformação estudadas. A relação deformação-vida obtida para a direção transversal é dada por Δεt/2 = 0,0186(2Nf)-0,262 + 0,235(2Nf)-0,476 com ponto de transição em 2Nt = 1,4x105 reversos, não sendo possível obtê-la para a direção longitudinal devido a problemas de flambagem. Vários métodos estimativos de propriedades de fadiga a partir de propriedades monotônicas foram comparados aos resultados experimentais. Os métodos da correlação quatro pontos e inclinação universal modificada apresentando boa correlação para a região de baixo-ciclo. Análise fratográfica por microscopia eletrônica de varredura mostrou a presença de estrias de propagação do estágio II, evidenciando a alta dutilidade do material. / In the present work, the monotonic and low cycle fatigue properties of thin sheet of interstitial free steel containing titanium additions, used in the automotive industry, were investigated. Fatigue tests were conducted under deformation control (Rε = -1) using a grip alignment fixture. The material exhibits different fatigue behavior for the transverse and longitudinal directions (in relation to the rolling direction). A comparison between the monotonic stress-strain curve and the cyclic stress-strain curve in the transverse direction showed that the material exhibits cyclic hardening in all strain amplitudes tested. The strain-life relationship obtained for transverse direction is given by Δεt/2 = 0,0186(2Nf)-0,262 + 0,235(2Nf)-0,476 with transition point in 2Nt = 1,4x105 reverses; buckling of longitudinal specimens made impossible to obtain such relationship. Several prediction methods of fatigue properties from monotonic properties were compared to the experimental results. The Four Point Correlation and the Modified Universal Slopes Methods showed a good correlation for the low cycle region. Fractographic analysis through Scanning Eletronic Microscopy showed the presence of Stage II striations, giving support to the high ductility of the material.
|
Page generated in 0.3436 seconds