• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal Transformations and Low Energy Electron Irradiation of 1,3,5-Trimethylbenzene on Au(111) Surfaces and on Alkanethiol SAMs

Vandergust, Ann 15 April 2013 (has links)
This thesis investigates the application of low energy electron irradiation to 1,3,5-trimethylbenzene films to test whether site-selective C–H bond cleavage can be achieved in a molecule presenting both aliphatic and aromatic target sites. IRRAS was used to characterize the orientation of vapour-deposited 1,3,5-trimethylbenzene on Au(111) and alkanethiolated gold under UHV and cryogenic conditions. On both substrates, the disordered as-deposited films were transformed by thermal treatment, producing two film structures – within the first 4-monolayers, aromatic rings lie nearly parallel to the metal surface, while molecules in additional layers are more upright. Low energy electron irradiation (0-10 eV) produced no dissociations in 1,3,5-trimethylbenzene; however, low energy electron transmission spectra indicate charge accumulates at interstitial sites in the mesitylene film, decelerating subsequent incident electrons. These decelerated electrons traverse the charged film and are reaccelerated, inducing dissociations in the underlying SAM. Contrary to literature claims, 1,3,5-trimethylbezene is a poor molecule for adsorption studies such as BET as the initial adsorption is disordered and thermodynamically unstable.
2

Low-Energy Electron Irradiation Efficiently Inactivates the Gram-Negative Pathogen Rodentibacter pneumotropicus—A New Method for the Generation of Bacterial Vaccines with Increased Efficacy

Fertey, Jasmin, Bayer, Lea, Kähl, Sophie, Haji, Rukiya M., Burger-Kentischer, Anke, Thoma, Martin, Standfest, Bastian, Schönfelder, Jessy, Casado, Javier Portillo, Rögner, Frank-Holm, Baums, Christoph Georg, Grunwald, Thomas, Ulbert, Sebastian 21 April 2023 (has links)
Bacterial pathogens cause severe infections worldwide in livestock and in humans, and antibiotic resistance further increases the importance of prophylactic vaccines. Inactivated bacterial vaccines (bacterins) are usually produced via incubation of the pathogen with chemicals such as formaldehyde, which is time consuming and may cause loss of immunogenicity due to the modification of structural components. We evaluated low-energy electron irradiation (LEEI) as an alternative method to generate a bacterin. Rodentibacter pneumotropicus, an invasive Gram-negative murine pathogen, was inactivated with LEEI and formaldehyde. LEEI resulted in high antigen conservation, and LPS activity was significantly better maintained when compared with formaldehyde treatment. Immunization of mice with LEEI-inactivated R. pneumotropicus elicited a strong immune response with no detectable bacterial burden upon sublethal challenge. The results of this study suggest the inactivation of bacteria with LEEI as an alternative, fast and efficient method to generate bacterial vaccines with increased efficacy.
3

Low Energy Electron Irradiation Is a Potent Alternative to Gamma Irradiation for the Inactivation of (CAR-)NK-92 Cells in ATMP Manufacturing

Walcher, Lia, Kistenmacher, Ann-Kathrin, Sommer, Charline, Böhlen, Sebastian, Ziemann, Christina, Dehmel, Susann, Braun, Armin, Tretbar, Uta Sandy, Klöß, Stephan, Schambach, Axel, Morgan, Michael, Löffler, Dennis, Kämpf, Christoph, Blumert, Conny, Reiche, Kristin, Beckmann, Jana, König, Ulla, Standfest, Bastian, Thoma, Martin, Makert, Gustavo R., Ulbert, Sebastian, Kossatz-Böhlert, Uta, Köhl, Ulrike, Dünkel, Anna, Fricke, Stephan 24 March 2023 (has links)
Background: With increasing clinical use of NK-92 cells and their CAR-modified derivatives in cancer immunotherapy, there is a growing demand for efficient production processes of these “off-the-shelf” therapeutics. In order to ensure safety and prevent the occurrence of secondary tumors, (CAR-)NK-92 cell proliferation has to be inactivated before transfusion. This is commonly achieved by gamma irradiation. Recently, we showed proof of concept that low energy electron irradiation (LEEI) is a new method for NK-92 inactivation. LEEI has several advantages over gamma irradiation, including a faster reaction time, a more reproducible dose rate and much less requirements on radiation shielding. Here, LEEI was further evaluated as a promising alternative to gamma irradiation yielding cells with highly maintained cytotoxic effector function. Methods: Effectiveness and efficiency of LEEI and gamma irradiation were analyzed using NK-92 and CD123-directed CAR-NK-92 cells. LEE-irradiated cells were extensively characterized and compared to gamma-irradiated cells via flow cytometry, cytotoxicity assays, and comet assays, amongst others. Results: Our results show that both irradiation methods caused a progressive decrease in cell viability and are, therefore, suitable for inhibition of cell proliferation. Notably, the NKmediated specific lysis of tumor cells was maintained at stable levels for three days postirradiation, with a trend towards higher activities after LEEI treatment as compared to gamma irradiation. Both gamma irradiation as well as LEEI led to substantial DNA damage and an accumulation of irradiated cells in the G2/M cell cycle phases. In addition, transcriptomic analysis of irradiated cells revealed approximately 12-fold more differentially expressed genes two hours after gamma irradiation, compared to LEEI. Analysis of surface molecules revealed an irradiation-induced decrease in surface expression of CD56, but no changes in the levels of the activating receptors NKp46, NKG2D, or NKp30. Conclusions: The presented data show that LEEI inactivates (CAR-)NK-92 cells as efficiently as gamma irradiation, but with less impact on the overall gene expression. Due to logistic advantages, LEEI might provide a superior alternative for the manufacture of (CAR-)NK-92 cells for clinical application.

Page generated in 0.1466 seconds