• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Sm/Ba substitution on the J/sub c/ in magnetic field of SmBCO thin films by low temperature growth technique

Miura, Masashi, Itoh, Masakazu, Ichino, Yusuke, Yoshida, Yutaka, Takai, Yoshiaki, Matsumoto, Kaname, Ichinose, Ataru, Horii, Shigeru, Mukaida, Masashi 06 1900 (has links)
No description available.
2

Development of Chirp-Controlled Pump-Probe Technique and Study of TeraHertz Radiation Enhancement

Liao, Li-Yuan 26 July 2006 (has links)
In this thesis, a home made chirp-controlled pump-probe measurement system has been developed and is used to explain possible mechanism of THz radiation enhancement under positive chirped incident pulse. The chirp-controlled pump-probe measurement system with temporal resolution of around 100 femtosecond and chirp parameter tuning from ¡V350 fs2 to +650 fs2 is demonstrated. Meanwhile, using chirp-controlled pump-probe measurement system, ultrafast dynamics of photogenerated carrier in low-temperature growth GaAs in different chirp by is characterized. The relaxation time of low-temperature growth GaAs in positive chirp pump pulse is 461fs and shorter than one, which is 497fs, in negative chirp pump pulse. The result is explained by the Pump-Dump process in negative chirp pump pulse and similar band-filling effect in positive chirp pump pulse.
3

Synthesis of ZnO, CuO and their Composite Nanostructures for Optoelectronics, Sensing and Catalytic Applications

Zaman, Saima January 2012 (has links)
Research on nanomaterials has become increasingly popular because of their unique physical, chemical, optical and catalytic properties compared to their bulk counterparts. Therefore, many efforts have been made to synthesize multidimensional nanostructures for new and efficient nanodevices. Among those materials, zinc oxide (ZnO), has gained substantial attention owing to many outstanding properties. ZnO besides its wide bandgap of 3.34 eV exhibits a relatively large exciton binding energy (60 meV) at room temperature which is attractive for optoelectronic applications. Likewise, cupric oxide (CuO), having a narrow band gap of 1.2 eV and a variety of chemo-physical properties that are attractive in many fields. Moreover, composite nanostructures of these two oxides (CuO/ZnO) may pave the way for various new applications. This thesis can be divided into three parts concerning the synthesis, characterization and applications of ZnO, CuO and their composite nanostructures. In the first part the synthesis, characterization and the fabrication of ZnO nanorods based hybrid light emitting diodes (LEDs) are discussed. The low temperature chemical growth method was used to synthesize ZnO nanorods on different substrates, specifically on flexible non-crystalline substrates. Hybrid LEDs based on ZnO nanorods combined with p-type polymers were fabricated at low temperature to examine the advantage of both materials. A single and blended light emissive polymers layer was studied for controlling the quality of the emitted white light. The second part deals with the synthesis of CuO nanostructures (NSs) which were then used to fabricate pH sensors and exploit these NSs as a catalyst for degradation of organic dyes. The fabricated pH sensor exhibited a linear response and good potential stability. Furthermore, the catalytic properties of petals and flowers like CuO NSs in the degradation of organic dyes were studied. The results showed that the catalytic reactivity of the CuO is strongly depending on its shape. In the third part, an attempt to combine the advantages of both ZnO and CuO NSs was performed by developing a two-step chemical growth method to synthesize the composite NSs. The synthesized CuO/ZnO composite NSs revealed an extended light absorption and enhanced defect related visible emission.
4

Effect of BaZrO3 Addition and Film Growth on Superconducting Properties of (Nd,Eu,Gd)Ba2Cu3Oy Thin Films

Ichino, Yusuke, Yoshida, Yutaka, Inoue, Kouichi, Ozaki, Toshinori, Takai, Yoshiaki, Matsumoto, Kaname, Mukaida, Masashi, Kita, Ryusuke, Ichinose, Ataru, Horii, Shigeru 06 1900 (has links)
No description available.
5

Elaboration et caractérisation d'électrodes VACNT/MnO2 pour application aux supercondensateurs hybrides / Development and characterization of VACNT/MnO2 electrodes and application to supercapacitors

Pibaleau, Baptiste 12 December 2018 (has links)
Les travaux de cette thèse ont porté sur l'élaboration, l'optimisation et l'étude d'électrodes composites de nanotubes de carbone verticalement alignés (VACNT) sur un collecteur d'aluminium et modifiés par l'oxyde de manganèse (MnO₂). Les VACNT synthétisés par voir CVD à basse température (580°C:) directement sur le collecteur ont permis d'obtenir des tapis de NTC parfaitement alignés d'une épaisseur allant de 20 à 80 µm et possédant des densités de 10¹¹ NTC.cm² et dont le taux de catalyseur (Fe) est inférieur à 1%. Leur modification par du MnO2 permet d’accroître leur capacité de stockage électrochimique. Afin de réaliser un enrobage optimal des VACNT par le MnO₂, différents précurseurs de l'oxyde ainsi que diverses méthodes(dépôts électrochimiques, chimiques, CVD) ont été utilisées et optimisées. Les composites élaborés ont ensuite été étudiées en tant que matériau d'électrode pour la réalisation de supercondensateurs asymétriques eu milieux aqueux. / This thesis was focused on the development, optimization and study of composite electrodes of vertically aligned carbon nanotubes (VACNT) on an aluminum collector and modified with manganese oxide (MnO₂).VACNT were synthesized by a CVD process at low temperature (580° C) directly on the collector. Perfectly aligned CNT forest with a thickness of 20 to 80 μm were obtained with high densities of 10¹¹ NTC.cm² and whose catalyst (Fe) content is less than 1%. Their modification with MnO₂ increase their electrochemical storage capacity. In order to achiew optimal coating of VACNT by MnO₂, different precursors of the oxide and various methods ( electrochemical, chemical, CVD) were used and optimized. Composites were studied as electrode material for the realization of asymmetric supercapacitors in aqueous media. In addition, structurals, morphologicals and electrochemicals analyzes carried out on the different materials allowed a better understanding of the role of the elaboration's conditions on the properties of the VACNT/MnO₂ composites obtained.

Page generated in 0.253 seconds