• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of Magnetic Activity Effects on the Thermospheric Winds in the Low Latitude Ionosphere

Davila, Ricardo Cruz 01 May 1994 (has links)
The purpose of this thesis is to examine the effects of magnetic activity on the low latitude F-region thermospheric winds. The F-region (120-1600 km) is a partially ionized medium where O+ and O are the major ion and neutral species, respectively. The thermospheric winds at these altitudes are driven primarily by pressure gradient forces resulting from the solar heating during the day and cooling at night. For this study, we use measured Fabry-Perot Interferometer (FPD winds at Arequipa (16.5°S, 71.5°W) and measured FPI and Incoherent Scatter Radar (ISR) winds at Arecibo (18.6°N, 66.8°W). Previous wind studies at Arequipa and Arecibo concentrated on the climatological wind patterns highlighting solar cycle effects and seasonal variations; however, these studies did not address the effects of magnetically disturbed conditions on the seasonal averaged winds. To properly investigate storm time effects on the neutral winds, we must first investigate solar cycle effects on the seasonal averages during magnetically quiet (Kp < 3) conditions. This study will include a detailed analysis of solar cycle effects on the seasonally averaged winds for Arequipa and Arecibo. In addition to the wind averages, we used cubic splines to fit the average wind profiles and to provide better comparisons with modeled results. We also performed a study on the airglow emission heights using both Jicamarca and Arecibo electron density profiles. This established the height which we will use to compare our experimental data with the model winds. To investigate magnetic activity effects on the FPI and ISR winds, we used three magnetic activity cases which cover all storm time scenarios. These magnetic activity cases are the extended quiet, short-term disturbed, and extended disturbed conditions. The first case, the extended quiet, is the condition where the previous and short term magnetic activity is quiet (12 hour Kp ≤ 3 and the Kp ≤ 3). The short-term disturbed case is defined for the condition where the previous magnetic activity is quiet (12 hour Kp ≤ 3) and then becomes disturbed (Kp ≤ 3). Last, we considered the case where previous and short-term magnetic activity are disturbed (12 hour Kp ≤ 3 and the Kp ≤ 3). Our last objective is to use our data to validate the predictions from the Thermosphere/Ionosphere General Circulation model (TIGCM93) and the Horizontal Wind Model (HWM93). This study should further our understanding of the physical processes which produce the low latitude quiet and disturbed winds. The TIGCM93 is a first principal model and the HWM93 is an empirical model based on ground-based and satellite measurements. The main advantage of using the TIGCM93 is the ease of studying the dynamics of ionospheric phenomena by simply changing various model inputs, while the HWM93 allows us a comparison between our experimental wind data sets with the established climatology of the winds over Arequipa and Arecibo.
2

Climatology of Middle and Low-Latitude F-Region Plasma Drifts from Satellite Measurements

Jensen, John W. 01 May 2007 (has links)
We used ion drift observations from the DE-2 satellite to study for the first time the longitudinal variations of middle and low latitude F-region zonal plasma drifts during quiet and disturbed conditions. The daytime quiet-time drifts do not change much with longitude. In the dusk-premidnight period, the equinoctial middle latitude westward drifts are smallest in the European sector, and the low latitude eastward drifts are largest in the American-Pacific sector. The longitudinal variations of the late night-early morning drifts during June and December solstice are anti-correlated. During geomagnetically active time s, there are large westward perturbation drifts in the late afternoon-early night sector at upper middle latitudes and in the midnight sector at low latitudes. The largest westward disturbed drifts during equinox occur in the European sector and the smallest in the Pacific region. These results suggest that during equinox, Subauroral Polarization Streams (SAPS) events occur most often at European longitudes. The low latitude perturbation drifts do not show significant longitudinal dependence. We have used five years of measurements on board the ROCSA T-1 satellite to develop a detailed local-time, season, and longitude-dependent quiet-time global empirical model for equatorial F-region vertical plasma drifts. We show that the longitudinal dependence of the daytime and nighttime vertical drifts is much stronger than reported earlier, especially during December and June solstice. The late night downward drift velocities are larger in the eastern than in the western hemisphere at all seasons, the morning and afternoon December solstice drifts have significantly different longitudinal dependence, and the daytime upward drifts have strong wavenumber-four signatures during equinox and June solstice. The largest evening upward drifts occur during equinox and December solstice near the American sector. The longitudinal variations of the evening prereversal velocity peaks during December and June solstice are anti-correlated, which further indicates the importance of conductivity effects on the electrodynamics of the equatorial ionosphere. We have shown that disturbance dynamo largely does not affect daytime drifts. The upward perturbations during the nighttime are largely season independent, but near the prereversal enhancement, the downward perturbation drifts are largest during equinox and smallest during December.
3

Neogene Low-latitude Seasonal Environmental Variations: Stable Isotopic and Trace Elemental Records in Mollusks from the Florida Platform and the Central American Isthmus

Tao, Kai 2012 August 1900 (has links)
This Ph.D. dissertation integrates stable isotope and trace element geochemistry in modern and fossil gastropod shells to study low-latitude marine paleoenvironments. First, stable isotopes (delta18O and delta13C) and Sr/Ca ratios are used to examine low-latitude temperature and salinity variations recorded in Plio-Pleistocene (3.5-1.6 Ma) fossils from western Florida during periods of high-latitude warming and "global" cooling. The middle Pliocene Pinecrest Beds (Units 7 and 4) and the overlaying Plio-Pleistocene Caloosahatchee Formation generate significantly different delta18O-derived paleotemperatures but identical Sr/Ca ratios. High delta18O values, together with low delta13C values and brackish fauna, indicate that Unit 4 was deposited in a lagoonal environment similar to modern Florida Bay. In contrast, relatively low delta18O and high delta13C values in Unit 7 and Caloosahatchee Formation represent deposition in an open-marine environment. The observed Unit 7 and Caloosahatchee paleotemperatures are inconsistent with middle Pliocene warming event, but consistent with the Plio-Pleistocene cooling trend. To quantify modern upwelling and freshening signals and contrast these signals between the tropical eastern Pacific (TEP) and southwestern Caribbean (SWC), methodologies are developed for reconstructing seasonal upwelling and freshening patterns from modern tropical gastropod shells from Panama using: 1) paired oxygen and carbon isotopic profiles and delta18O-delta13C (delta-delta) correlations, and 2) deviation from baseline delta18O values that represent conditions free of seasonal upwelling or freshening influences. Shell delta18O values normalized to the baseline faithfully record modern conditions of little or no upwelling in SWC and Gulf of Chiriqui, and strong upwelling in the Gulf of Panama, as well as strong freshwater input in most areas. The baseline and delta-delta methods are applied to identify and quantify changes in upwelling and freshening in the Neogene TEP and SWC seawaters associated with the final closure of Central American Isthmus. The records reveal significant upwelling in late Miocene SWC and mid Pliocene TEP waters, strong freshening in SWC waters from 5.7-2.2 Ma, and minimal seasonal upwelling and/or freshening variations in Plio-Pleistocene SWC waters. The reconstructed paleotemperatures agree with the global cooling trend through the late Miocene, but lack evidence for middle Pliocene warming or late Neogene global cooling.
4

Characteristics of the mesoscale field-aligned currents in the dusk sector of the auroral oval based on data from the Swarm satellites / Swarm衛星データに基づくオーロラオーバル夕方側領域におけるメソスケール沿磁力線電流の特性

Yokoyama, Yoshihiro 25 January 2021 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22875号 / 理博第4641号 / 新制||理||1667(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 田口 聡, 教授 松岡 彩子, 教授 橋口 浩之 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
5

Lunar Tidal Effects in the Electrodynamics of the Low-Latitude Ionosphere

Tracy, Brian David 01 May 2013 (has links)
We used extensive measurements made by the Jicamarca Unattended Long-Term Investigations of the Ionosphere and Atmosphere (JULIA) and Incoherent Scatter Radar (ISR) systems at Jicamarca, Peru during geomagnetic quiet conditions to determine the climatologies of lunar tidal effects on equatorial vertical plasma drifts. We use, for the first time, the expectation maximization (EM) algorithm to derive the amplitudes and phases of the semimonthly and monthly lunar tidal perturbations. Our results indicate, as expected, lunar tidal effects can significantly modulate the equatorial plasma drifts. The local time and seasonal dependent phase progression has been studied in much more detail than previously and has shown to have significant variations from the average value. The semimonthly drift amplitudes are largest during December solstice and smallest during June solstice during the day, and almost season independent at night. The monthly lunar tidal amplitudes are season independent during the day, while nighttime monthly amplitudes are largest and smallest in December solstice and autumnal equinox, respectively. The monthly and semimonthly amplitudes decrease from early morning to afternoon and evening to morning with moderate to large increases near dusk and dawn. We also examined these perturbation drifts during periods of sudden stratospheric warmings (SSWs). Our results show, for the first time, the enhancements of the lunar semimonthly tidal effects associated with SSWs to occur at night, as well as during the day. Our results also indicate during SSWs, monthly tidal effects are not enhanced as strongly as the semimonthly effects.
6

Multi-diagnostic Investigations of the Equatorial and Low-latitude Ionospheric Electrodynamics and Their Impacts on Space-based Technologies

Khadka, Sovit M. January 2018 (has links)
Thesis advisor: Prof. Michael J. Naughton / Thesis advisor: Dr. Cesar E. Valladares / The equatorial and low-latitude ionosphere of the Earth exhibits unique features on its structuring, coupling, and electrodynamics that offer the possibility to forecast the dynamics and fluctuations of ionospheric plasma densities at later times. The scientific understanding and forecasting of ionospheric plasma are necessary for several practical applications, such as for mitigating the adverse effects of space weather on communication, navigation, power grids, space mission, and for various scientific experiments and applications. The daytime equatorial electrojet (EEJ), equatorial ionization anomaly (EIA), as well as nighttime equatorial plasma bubble (EPB) and plasma blobs are the most prominent low-latitude ionospheric phenomena. This dissertation focuses on the multi-diagnostic study of the mechanism, properties, abnormalities, and interrelationships of these phenomena to provide significant contributions to space weather communities from the ground- and space-based measurements. A strong longitudinal, seasonal, day-to-day variability and dependency between EEJ, ExB vertical plasma drift, and total electron content (TEC) in the EIA distribution are seen in the equatorial and low-latitude region. In general, the EEJ strength is stronger in the west coast of South America than in its east coast. The variability of the EEJ in the dayside ionosphere significantly affects the ionospheric electron density variation, dynamics of the peak height of F2-layer, and TEC distributions as the EEJ influences the vertical transport mechanism of the ionospheric plasma. The eastward electric field (EEF) and the neutral wind play a decisive role in controlling the actual configuration of the EIA. The trans-equatorial neutral wind profile calculated using data from the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI) located near the geomagnetic equator and a physics-based numerical model, LLIONS (Low-Latitude IONospheric Sector) give new perspectives on the effects of daytime meridional neutral winds on the consequent evolution of the asymmetry of the equatorial TEC anomalies during the afternoon onwards. The spatial configurations including the strength, shape, amplitude and latitudinal extension of the EIA crests are affected by the EEF associated with the EEJ under undisturbed conditions, whereas the meridional neutral winds play a significant role in the development of their asymmetric structure in the low-latitude ionosphere. Additionally, the SWARM satellite constellation and the ground-based LISN (Low-Latitude Ionospheric Sensor Network) data allow us to resolve the space-time ambiguity of past single-satellite studies and detect the drastic changes that EPBs and plasma blobs undergo on a short time scale. The coordinated quantitative analysis of a plasma density observation shows evidence of the association of plasma blobs with EPBs via an appropriate geomagnetic flux tube. Plasma blobs were initially associated with the EPBs and remained at the equatorial latitude right above the EPBs height, but later were pushed away from geomagnetic equator towards EIA latitudes by the EPB/ depleted flux tubes that grew in volume. Further, there exists a strong correlation between the noontime equatorial electrojet and the GPS-derived TEC distributions during the afternoon time period, caused by vertical E × B drift via the fountain effect. Nevertheless, only a minor correlation likely exists between the peak EEJ and the net postsunset ionospheric scintillation index (S4) greater than 0.2. This study not only searches for a mutual relationship between the midday, afternoon and nighttime ionospheric phenomena but also aims at providing a possible route to improve our space weather forecasting capability by predicting nighttime ionospheric irregularities based on midday measurements at the equatorial and low latitudes. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
7

Analysis of Total Electron Content (TEC) Variations in the Low- and Middle-Latitude Ionosphere

Shim, JA Soon 01 May 2009 (has links)
Detailed study of the spatial correlations of day-to-day ionospheric TEC variations on a global scale was performed for four 30-day-long periods in 2004 (January, March/April, June/July, September/October) using observations from more than 1000 ground-based GPS receivers. In order to obtain the spatial correlations, initially, the day-to-day variability was calculated by first mapping the observed slant TEC values for each 5-minute GPS ground receiver-satellite pair to the vertical and then differencing it with its corresponding value from the previous day. This resulted in more than 150 million values of day-to-day change in TEC (delta TEC). Next, statistics were performed on the delta TEC values. The study indicates strong correlationsbetween geomagnetic conjugate points, and these correlations are larger at low latitudes than at middle latitudes. Typical correlation lengths, defined as the angular separation at which the correlation coefficient drops to 0.7, were found to be larger at middle latitudes than at low latitudes. The correlation lengths are larger during daytime than during nighttime. The results indicate that the spatial correlation is largely independent of season. These spatial correlations are important for understanding the physical mechanisms that cause ionospheric weather variability and are also relevant to data assimilation. In an effort to better understand the effects of neutral wind and electric field on the TEC variability, a physics-based numerical Ionosphere/Plasmasphere Model (IPM) was used. The model solves the transport equations for the six ions, O+, NO+, O2+, N2+, H+, and He+, on convecting flux tubes that realistically follow the geomagnetic field. Two of the inputs required by the IPM are the thermospheric neutral wind and the low-latitude electric field, which can be given by existing empirical model or externally specified by the user. To study the relative importance of the neutral wind and the electric field for the TEC variations, these two model inputs were externally modified and the resulting variations in TEC were compared. Neutral wind and electric field modifications were introduced at three different local times in order to investigate the effect of different start times of the imposed perturbations on TEC. This study focused on modeled low- and middlelatitude TEC variations in the afternoon and post-sunset at three different longitude sectors for medium solar activity and low geomagnetic activity. The largest changes in TEC were found predominantly in the equatorial anomaly, and a significant longitudinal dependence was observed. The results indicate that the perturbation effect on the TEC at 2100 LT varied nonlinearly with the elapsed time after the imposed neutral wind and electric field perturbations. An important outcome of this study is that daytime neutral wind and/or electric field modifications will lead to essentially identical TEC changes in the 2100 local time sector.
8

Variations climatiques et variations du cycle hydrologique aux basses latitudes au cours du Quaternaire : une approche combinant modèle et données / Climate and low latitude water cycle variations during the Quaternary : a model-data approach

Extier, Thomas 18 October 2019 (has links)
Le climat du Quaternaire est défini par une succession de périodes glaciaires et interglaciaires enregistrées dans les archives climatiques à différentes latitudes. La carotte de glace d’EPICA Dome C fournit un enregistrement haute résolution sur les derniers 800 ka du δ18Oatm (i.e. δ18O de la molécule d’oxygène de l’air) qui combine les variations passées du cycle hydrologique des basses latitudes et de la productivité de la biosphère. En l’absence du comptage des couches annuelles, ce proxy peut être utilisé comme méthode de datation orbitale des carottes de glace, en lien avec l’insolation au 21 juin à 65°N. Cependant, un décalage de 6 ka entre le δ18Oatm et l’insolation, généralement observé lors des terminaisons glaciaires-interglaciaires, est appliqué sur l’ensemble de l’enregistrement lors de la construction de l’échelle d’âge. Ce décalage et la complexité du signal du δ18Oatm expliquent l’incertitude élevée de 6 ka des carottes de glace, ce qui limite leur interprétation en termes de variations climatiques et environnementales conjointement à d’autres archives. J’ai donc développé une nouvelle chronologie pour les carottes de glace, basée sur le lien entre le δ18Oatm et le δ18Ocalcite des spéléothèmes est-asiatiques, à partir de nouvelles mesures isotopiques permettant d’avoir pour la première fois un enregistrement complet sur les derniers 800 ka à Dome C. Cette nouvelle chronologie permet de réduire les incertitudes par rapport à la chronologie actuelle et d’avoir une meilleure séquence des évènements entre les hautes et basses latitudes. J’ai ensuite développé un modèle simulant la composition isotopique de l’oxygène atmosphérique afin de répondre au manque d’interprétations quantitatives de ce proxy ainsi que pour vérifier son lien avec le δ18Ocalcite sur plusieurs cycles climatiques. Pour modéliser le δ18Oatm nous avons dû coupler le modèle climatique de complexité intermédiaire iLOVECLIM avec le modèle de végétation CARAIB. Le δ18Oatm simulé par le modèle couplé sur plusieurs dizaines de milliers d’années confirme que ses variations sont en phase avec celles de l’insolation de l’hémisphère Nord (hormis lors d’évènements de Heinrich) et avec celles du δ18Ocalcite via des modifications du cycle hydrologique des basses latitudes, impactant la composition isotopique de l’eau de pluie utilisée par la biosphère terrestre lors de la photosynthèse. / Quaternary glacial-interglacial cycles are recorded in various climatic archives from high to low latitudes. The EPICA Dome C ice core provides a high-resolution record over the last 800 ka of δ18Oatm (i.e. δ18O of atmospheric O2) which combines past variations of the low latitude water cycle and of the biosphere productivity. In absence of annual layer counting, this proxy can be used for orbital dating in association with the June 21st insolation at 65°N to build an ice core chronology. However a lag of 6 ka between the δ18Oatm and the insolation, classically observed during glacial-interglacial terminations, is applied to the entire record during the chronology construction. This lag and the complexity of the δ18Oatm signal are the main reasons why the ice core chronology presents a high 6 ka uncertainty which limits their interpretation, jointly with other paleoclimate archives, in terms of past climate and environmental variations. To solve this issue I have developed a new ice core chronology based on the relation between the δ18Oatm and the δ18Ocalcite of east-asian speleothems, using new isotope measurements allowing for the first time a complete record over the last 800 ka at Dome C. This new chronology reduces the uncertainties compared to the actual ice core chronology strongly based on δ18Oatm and shows a better sequence of events between the high and low latitudes records. Then, I have developed a model to reproduce the isotopic composition of atmospheric O2 to address the lack of quantitative interpretations of this proxy and to check our assumption of synchronicity with the δ18Ocalcite over several climatic cycles. To reproduce the variations of the δ18Oatm, it was necessary to couple the intermediate complexity climate model iLOVECLIM and the vegetation model CARAIB. Finally, the δ18Oatm variations simulated with the new coupled model over several thousand years are in phase with the insolation of the Northern hemisphere (except during Heinrich events) and with low latitudes δ18Ocalcite variations. This can be explained by changes in the low latitude water cycle related to changes in the isotopic composition of meteoric water used by the terrestrial biosphere during photosynthesis.

Page generated in 0.0668 seconds