• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A non-asymptotic study of low-rank estimation of smooth kernels on graphs

Rangel Walteros, Pedro Andres 12 January 2015 (has links)
This dissertation investigates the problem of estimating a kernel over a large graph based on a sample of noisy observations of linear measurements of the kernel. We are interested in solving this estimation problem in the case when the sample size is much smaller than the ambient dimension of the kernel. As is typical in high-dimensional statistics, we are able to design a suitable estimator based on a small number of samples only when the target kernel belongs to a subset of restricted complexity. In our study, we restrict the complexity by considering scenarios where the target kernel is both low-rank and smooth over a graph. Using standard tools of non-parametric estimation, we derive a minimax lower bound on the least squares error in terms of the rank and the degree of smoothness of the target kernel. To prove the optimality of our lower-bound, we proceed to develop upper bounds on the error for a least-square estimator based on a non-convex penalty. The proof of these upper bounds depends on bounds for estimators over uniformly bounded function classes in terms of Rademacher complexities. We also propose a computationally tractable estimator based on least-squares with convex penalty. We derive an upper bound for the computationally tractable estimator in terms of a coherence function introduced in this work. Finally, we present some scenarios wherein this upper bound achieves a near-optimal rate. The motivations for studying such problems come from various real-world applications like recommender systems and social network analysis.
2

Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

jowkar, ghazaleh 01 January 2017 (has links)
COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically.
3

Semidefinite Facial Reduction for Low-Rank Euclidean Distance Matrix Completion

Krislock, Nathan January 2010 (has links)
The main result of this thesis is the development of a theory of semidefinite facial reduction for the Euclidean distance matrix completion problem. Our key result shows a close connection between cliques in the graph of the partial Euclidean distance matrix and faces of the semidefinite cone containing the feasible set of the semidefinite relaxation. We show how using semidefinite facial reduction allows us to dramatically reduce the number of variables and constraints required to represent the semidefinite feasible set. We have used this theory to develop a highly efficient algorithm capable of solving many very large Euclidean distance matrix completion problems exactly, without the need for a semidefinite optimization solver. For problems with a low level of noise, our SNLSDPclique algorithm outperforms existing algorithms in terms of both CPU time and accuracy. Using only a laptop, problems of size up to 40,000 nodes can be solved in under a minute and problems with 100,000 nodes require only a few minutes to solve.
4

Semidefinite Facial Reduction for Low-Rank Euclidean Distance Matrix Completion

Krislock, Nathan January 2010 (has links)
The main result of this thesis is the development of a theory of semidefinite facial reduction for the Euclidean distance matrix completion problem. Our key result shows a close connection between cliques in the graph of the partial Euclidean distance matrix and faces of the semidefinite cone containing the feasible set of the semidefinite relaxation. We show how using semidefinite facial reduction allows us to dramatically reduce the number of variables and constraints required to represent the semidefinite feasible set. We have used this theory to develop a highly efficient algorithm capable of solving many very large Euclidean distance matrix completion problems exactly, without the need for a semidefinite optimization solver. For problems with a low level of noise, our SNLSDPclique algorithm outperforms existing algorithms in terms of both CPU time and accuracy. Using only a laptop, problems of size up to 40,000 nodes can be solved in under a minute and problems with 100,000 nodes require only a few minutes to solve.
5

Widening the applicability of permutation inference

Winkler, Anderson M. January 2016 (has links)
This thesis is divided into three main parts. In the first, we discuss that, although permutation tests can provide exact control of false positives under the reasonable assumption of exchangeability, there are common examples in which global exchangeability does not hold, such as in experiments with repeated measurements or tests in which subjects are related to each other. To allow permutation inference in such cases, we propose an extension of the well known concept of exchangeability blocks, allowing these to be nested in a hierarchical, multi-level definition. This definition allows permutations that retain the original joint distribution unaltered, thus preserving exchangeability. The null hypothesis is tested using only a subset of all otherwise possible permutations. We do not need to explicitly model the degree of dependence between observations; rather the use of such permutation scheme leaves any dependence intact. The strategy is compatible with heteroscedasticity and can be used with permutations, sign flippings, or both combined. In the second part, we exploit properties of test statistics to obtain accelerations irrespective of generic software or hardware improvements. We compare six different approaches using synthetic and real data, assessing the methods in terms of their error rates, power, agreement with a reference result, and the risk of taking a different decision regarding the rejection of the null hypotheses (known as the resampling risk). In the third part, we investigate and compare the different methods for assessment of cortical volume and area from magnetic resonance images using surface-based methods. Using data from young adults born with very low birth weight and coetaneous controls, we show that instead of volume, the permutation-based non-parametric combination (NPC) of thickness and area is a more sensitive option for studying joint effects on these two quantities, giving equal weight to variation in both, and allowing a better characterisation of biological processes that can affect brain morphology.
6

Probabilistic and Bayesian nonparametric approaches for recommender systems and networks / Approches probabilistes et bayésiennes non paramétriques pour les systemes de recommandation et les réseaux

Todeschini, Adrien 10 November 2016 (has links)
Nous proposons deux nouvelles approches pour les systèmes de recommandation et les réseaux. Dans la première partie, nous donnons d’abord un aperçu sur les systèmes de recommandation avant de nous concentrer sur les approches de rang faible pour la complétion de matrice. En nous appuyant sur une approche probabiliste, nous proposons de nouvelles fonctions de pénalité sur les valeurs singulières de la matrice de rang faible. En exploitant une représentation de modèle de mélange de cette pénalité, nous montrons qu’un ensemble de variables latentes convenablement choisi permet de développer un algorithme espérance-maximisation afin d’obtenir un maximum a posteriori de la matrice de rang faible complétée. L’algorithme résultant est un algorithme à seuillage doux itératif qui adapte de manière itérative les coefficients de réduction associés aux valeurs singulières. L’algorithme est simple à mettre en œuvre et peut s’adapter à de grandes matrices. Nous fournissons des comparaisons numériques entre notre approche et de récentes alternatives montrant l’intérêt de l’approche proposée pour la complétion de matrice à rang faible. Dans la deuxième partie, nous présentons d’abord quelques prérequis sur l’approche bayésienne non paramétrique et en particulier sur les mesures complètement aléatoires et leur extension multivariée, les mesures complètement aléatoires composées. Nous proposons ensuite un nouveau modèle statistique pour les réseaux creux qui se structurent en communautés avec chevauchement. Le modèle est basé sur la représentation du graphe comme un processus ponctuel échangeable, et généralise naturellement des modèles probabilistes existants à structure en blocs avec chevauchement au régime creux. Notre construction s’appuie sur des vecteurs de mesures complètement aléatoires, et possède des paramètres interprétables, chaque nœud étant associé un vecteur représentant son niveau d’affiliation à certaines communautés latentes. Nous développons des méthodes pour simuler cette classe de graphes aléatoires, ainsi que pour effectuer l’inférence a posteriori. Nous montrons que l’approche proposée peut récupérer une structure interprétable à partir de deux réseaux du monde réel et peut gérer des graphes avec des milliers de nœuds et des dizaines de milliers de connections. / We propose two novel approaches for recommender systems and networks. In the first part, we first give an overview of recommender systems and concentrate on the low-rank approaches for matrix completion. Building on a probabilistic approach, we propose novel penalty functions on the singular values of the low-rank matrix. By exploiting a mixture model representation of this penalty, we show that a suitably chosen set of latent variables enables to derive an expectation-maximization algorithm to obtain a maximum a posteriori estimate of the completed low-rank matrix. The resulting algorithm is an iterative soft-thresholded algorithm which iteratively adapts the shrinkage coefficients associated to the singular values. The algorithm is simple to implement and can scale to large matrices. We provide numerical comparisons between our approach and recent alternatives showing the interest of the proposed approach for low-rank matrix completion. In the second part, we first introduce some background on Bayesian nonparametrics and in particular on completely random measures (CRMs) and their multivariate extension, the compound CRMs. We then propose a novel statistical model for sparse networks with overlapping community structure. The model is based on representing the graph as an exchangeable point process, and naturally generalizes existing probabilistic models with overlapping block-structure to the sparse regime. Our construction builds on vectors of CRMs, and has interpretable parameters, each node being assigned a vector representing its level of affiliation to some latent communities. We develop methods for simulating this class of random graphs, as well as to perform posterior inference. We show that the proposed approach can recover interpretable structure from two real-world networks and can handle graphs with thousands of nodes and tens of thousands of edges.

Page generated in 0.1038 seconds