• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 372
  • 65
  • 60
  • 51
  • 26
  • 17
  • 11
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 761
  • 294
  • 268
  • 240
  • 186
  • 173
  • 172
  • 171
  • 170
  • 169
  • 169
  • 169
  • 169
  • 138
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

An experimental investigation of spur gear efficiency and temperature : A comparison between ground and superfinished surfaces

Andersson, Martin January 2017 (has links)
This thesis focuses on reliability when testing gear efficiency and on how gear mesh efficiency can be increased without detrimental effects on the gears. Test equipment commonly used in gear research was analysed to identify important parameters for gear efficiency testing. The effect of the bearing model's load-dependent losses on gear mesh efficiency was also investigated. Two different surface finishes of gears, ground and superfinished, were investigated to determine how two different load levels during running-in affect gear mesh efficiency and changes in surface roughness. Efficiency and gear temperature were also measured for ground and superfinished gears with dip lubrication, as well as two different forms of spray lubrication (before and after gear mesh contact). Tests on a gear test rig, showed that different assemblies of the same test setup can yield different measurements of torque loss. The applied bearing model had a significant effect on the estimated gear mesh efficiency. The mesh efficiency of ground gears is affected by the running-in procedure, with a higher running-in load resulting in a higher mesh efficiency than a lower load. This effect was not seen for superfinished gears, which show the same gear mesh efficiency for both running-in loads. Gearbox efficiency increased with spray lubrication rather than dip lubrication. The gear mesh efficiency increased, and thus gear temperatures were reduced, when superfinished gears were used rather than ground gears. A lower gear temperature was measured when gears were spray lubricated at the mesh inlet rather than the mesh outlet. / <p>QC 20170314</p>
62

Recovery of base oil from lithium based waste lubricating grease by solvent-flocculation extraction

26 March 2015 (has links)
M.Tech. (Mechanical Engineering) / This study investigated process development of recovering base oils from waste lithium based lubricating grease using a novel combination of thermal degradation in an aqueous caustic solution and solvent extraction. Lubricating greases consist of a thickening agent dispersed in mineral or synthetic oil, forming a colloidal suspension [1]. Large and increasing volumes of used lubricating oil and grease are produced each year and are considered hazardous wastes. During operation, grease suffers mechanical and thermal degradation [2]. Subsequently, it is regarded as waste and it must be disposed. The waste oil should be collected and recycled not only to prevent the environmental pollution but also to preserve natural resources. Solvent extraction is the preferred method to recycle waste lubricants as it is cost-effective and requires no further purification of the product [3]. The influence of extraction temperature, agitation strength, extraction time, degrading agent concentration, degrading agent-to-grease and solvent-to-sludge mixing ratios on base oil recovery from waste lubricating grease was investigated. This study further optimised the process by studying the influence of various degrading agents (LiOH, NaOH and KOH) and solvents (n-hexane, toluene, heptane, butane, hexanol and acetone) on oil recovery. Oil recovery was enhanced by increase in both extraction temperature, time and agitation speed. The optimum extraction time was found to be 12 minutes. KOH was found to be the optimum degrading agent compared to LiOH and NaOH. Oil recovery also increased from 8.04% to 36.87% with increase in KOH m/m from 5% to 30%. The recovery also increased with an increase of solvent-to-sludge ratio up to 1:6. n-Hexane gave the highest recovery of 74.39% while acetone gave the lowest of 7.43%. A solvent recovery of 82.6% to 88% was obtained through fractional distillation. The study also investigated the differences between virgin and recycled oil using atomic absorption (AA), inductively coupled plasma (ICP) and Fourier transform infrared radiation (FTIR). Rheological studies of waste grease derived oil (WGDO) were also performed. ICP results showed traces of some elements such as Fe, Cu, Si, Ni and Al at a concentration of less than 0.9 mg/L. Oxidation was observed to occur at a band length of 1716 cm-1 while additives were identified at 1670 - 1725 cm-1. The oil viscosity slightly increased with increasing shear rate at temperatures between 60°C and 120°C. The shear rate was varied from 200 to 1000 1/s, with a viscosity convergence at 100°C. A financial economic model was applied to investigate the feasibility of the recycling technology. For 800 kg/day treatment plant, an investment of R 6,031,304.27 is required with a potential return on investment of 40%. Recovery was found to be favourable option compared to landfilling as it offers both economic and environmental benefits.
63

Study of the Deterministic Mixed Lubrication Model in Line Contact

Tseng, Zhi-hao 24 August 2011 (has links)
In this study, the mixed lubrication of line contact is numerically calculated and analyzed. The surface asperities are in contact for mixed lubrication which differs from elastohydrodynamic lubrication. In this study, the Poiseuille term is neglected when the film thickness was smaller than the cut-off value about 0.5 nanometer, so that the surface asperities in contact or not contact can be solved in a system equation using the Newton-Raphson method. The mixed lubrication was studied in three parts, including the steady-state, the transient state and the start-up process. The effect of amplitude and wavelength on the film thickness and the pressure are investigated using the deterministic quantifiable method. The mixed lubrication zone in terms of rolling speed and load is established for the smooth surface under the steady-state conditions. For a single asperity on the surface, results show that the maximum pressure increases with increasing amplitude and decreasing wavelength. At high load situation, the film thickness is flattened around the asperity in the steady-state conditions, but it is increased due to the squeezing effect in transient state. For the start-up process, two surfaces are gradually separated due to the growth of film thickness, so that the contact area of two surfaces decreases linearly with time. However, the interval of contact time decreases with increasing roller speed and Young¡¦s modulus, but decreasing load.
64

Studies on Thin Film Characteristics of Elastohydrodynamic Lubrication Using Laser Measurement Method

Huang, Bi-Wei 31 July 2003 (has links)
Abstract With the advent of new technology, various machine structures and elements appear delicate and diminutive so that the nanotribological studies are needed in the modern mechanical technological development. Thin film lubrication will be indispensable as the basis of key-technology in high-technological devices and ultra-precision machines. Therefore, the research of thin film lubrication in the nanometer order is very important. In this research uses a self-development optical elastohydrodynamic lubrication (EHL) tester to simulate the oil film characteristics in the contact region between steel ball and sapphire under the pure rolling condition. First, the variation of oil film thickness on the contact region is observed by using the optical interference principle. An inverse approach of EHL is employed to investigate the pressure distribution on the contact region of lubricant. Final, the oil thickness and pressure distribution are substituted into Reynolds equation to predict the pressure-viscosity index of lubricant. Results show that the oil film thickness increases with increasing rolling speed, and curvature radius of steel ball, but decreases with increasing load. Moreover, when the oil thickness of ester lubricant is less than 17nm, the film thickness is obviously deviated that predicted by the classical EHL theory, and the pressure-viscosity index increases from 0.8195 to 0.9093. This result indicates that the ratio of the adsorbent layer to the oil film increases and causes the increase of the lubricant viscosity.
65

A study of the effect of lubrication on the dynamics of spinning spindles

Soo, S. L. (Shao-lee) 05 1900 (has links)
No description available.
66

New numercial and semi-analytical formulations for the dynamic analysis of gas lubricated triboelements

Miller, Bradley A. 05 1900 (has links)
No description available.
67

Ultra-thin film tribology of elastomeric seals in pressurised metered dose inhalers

Grimble, David January 2009 (has links)
Within pressurised Metered Dose Inhalers (pMDIs) the contact between the valve components and elastomeric seals is of major significance, representing the main contributory factor to the overall system frictional characteristics. Therefore, the seal performance is extremely important and must be optimised to meet the contradictory requirements of preventing leakage and allowing smooth actuation. The environmentally driven trend to HFA formulations as opposed to CFC based ones has deteriorated this problem due to poor lubrication conditions and it has, consequently, increased the frictional losses during the pMDI actuation (hysteresis cycle). Research has been conducted into the key areas of the inhaler mechanism. As such, the contact pressure distribution and resulting reactions have been investigated, with emphasis on the correct treatment of the elastomer (seal) characteristics. The modelling of the device has been conducted within the environment of the multibody dynamics commercial software ADAMS, where a virtual prototype has been built using solid CAD geometries of the valve components. An equation was extrapolated to describe the relation between the characteristics of the ultra thin film contact conditions (sliding velocity, surface geometry, film thickness and reaction force) encountered within the inhaler valve and integrated into the virtual prototype allowing the calculation of friction within the conjuncture (due to viscous shear and adhesion). The latter allowed the analysis and optimisation of key device parameters, such as seal geometry, lubricant properties etc. It has been concluded that the dominant mechanism of friction is adhesion, while boundary lubrication is the prevailing lubrication regime due to the poor surface roughness to film thickness ratio. The multibody dynamics model represents a novel multi physics approach to study the behaviour of pMDIs, including rigid body inertial dynamics, general elasticity, surface interactions (such as adhesion), hydrodynamics and intermolecular surface interactions (such as Van der Waals forces). Good agreement has been obtained against experimental results at component and device level.
68

Pretreatment of Small Four-Stroke Engine Components for No-Oil Hot Tests

Talluri, Srikrishna 13 December 2000 (has links)
"Hot-tests" form a vital facet towards the end of the production line of modern automotive plants, where the condition of the engine is checked by running it for a short period of time, to ensure its performance under standard operating conditions. The duration of hot-tests for small engines varies from 20-75 seconds. In the conventional procedure, about 10-30 grams of lubricant (for pre-coating) is used with about 650ml of standard oil for engine testing. However, about 1-3 oz. of oil is lost per engine, as it cannot be sucked out of the crankcase after the hot tests. The loss of 1-3 oz. of oil leads to a significant loss in revenue, over the large number of engines manufactured. It also causes a potential safety and environmental hazard due to leakage of lubricant during shipping or upon first use in a particular application. The goal of this project is to conduct "no-oil" hot tests using less than 10 grams of specially formulated lubricants for pretreatment. Implementation of this procedure for conducting the hot tests in the manufacturing facility would save revenue and eliminate potential hazards mentioned above in addition to cutting down on manpower and/or machinery used for handling the engine oil. An experimental study of pre-treatment of interacting interfaces of engine components, with specially formulated lubricants, for no-oil hot tests is presented. This study includes sixteen tests performed on the production line of Tecumseh's small engine manufacturing plant. The formulated lubricants were made up of tribopolymer formers, i.e., monomers, which were used in previous tribopolymerization studies. Tribopolymerization is defined as the planned or intentional formation of protective polymeric films directly and continuously on rubbing surfaces to reduce damage and wear by the use of minor concentrations of selected compounds capable of forming polymeric films in situ. This study entailed the investigation of the anti-wear properties of the formulated lubricants on a high temperature pin-on-disk machine and subsequent selection of lubricants exhibiting superior performance for use in the engine tests. The no-oil hot-tests performed at Virginia Tech and on the assembly line exhibited the superior anti-scuffing/anti-wear properties of the specially formulated lubricants, to warrant their use on the production line in the near future. / Master of Science
69

Ceramic lubrication: vapor phase tribopolymerization and a new high speed, high load pin-on-disk machine

Smith, J. Christopher 24 March 2009 (has links)
An experimental study of ceramic lubrication through the concept of tribopolymerization from the vapor phase is presented. Four vinyl monomer additives were studied, i.e., vinyl acetate, diallyl phthalate, lauryl methacrylate, and vinyl octadecyl ether. The liquid additives were heated, vaporized, and delivered to an enclosed alumina-on-alumina "pin-on-disk” contact region by a stream of dry nitrogen gas. Alumina ball wear reductions of up to 99% were observed and total wear reductions (ball and disk) of over 70% were also common. Colorful surface films visible to the naked eye were examined. Monomer concentration does not appear to have an effect over the range examined. But, higher monomer delivery temperatures have a significant beneficial effect in reducing wear. Selective FTIRM analysis shows evidence of both polymerization and monomer reactions with the alumina surface. It is believed that the surface films formed reduce adhesion and therefore decrease both wear and friction. The development, design, and construction of a high load, high speed, high frictional heat generation pin-on-disk machine is presented. A very successful geometry has been created and recommendations for added instrumentation and its future use for both liquid and vapor phase tests are presented. / Master of Science
70

Study on wear particles of gas turbines during running-in

郭傑明, Kwok, K. M. January 1982 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Science in Engineering

Page generated in 0.0789 seconds