• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studie om ekonomisk lönsamhet och miljömässig påverkan av olika lösningar för skyddsgas / Study on the economic viability and environmental impact of different solutions for shielding gas

Lövgren, Jens January 2016 (has links)
Most people agree that the Earth's climate is changing and that it's anthropogenic actions that are the cause of it. The year 2015 was a historic milestone for the Earth's future climate. A climate agreement was signed by several heads of government worldwide. The agreement will take place and enter into force 2020, with a goal that the earth's temperature must not rise more than 2 degrees. In order to achieve this goal all countries, states, communities, entrepreneurs and companies begin to work together to reduce emissions. The coffee rostary Löfbergs aims to reduce their carbon footprint by 40 % to 2020. To achieve the goal, they are working with sustainable actions to reduce the climate impact of all processes the coffee undergoes before it is a drinkable cup of coffee. The enviromental work done in the production is performed constantly, often by both large and small energy efficiency of technical and mechanical processes. The purpose of this study is to investigate whether Löfbergs shielding gas requirement can be improved by comparison of the current technical solution to other alternative solutions. The goal of this study is to find solutions to improve Löfbergs energy, climate impact and cost, through technological improvements of the shielding gas requirement. Comparisons and calculations in this report is mainly done by studying each process lifecycle, to analyse and determine the climate impact of the product flows for the studied solutions to the shielding gas requirements causes. According to the results obtained in the present report, which covered five different solutions to shielding gas requirement, financial savings can be made by around 900 000 Swedish kronor per year and the environmental impact is improved up to 71 %. Both better and worse solutions to climate change and economic cost is presented in the report to guide Löfbergs in the development of a more cost- and energy-efficient and climate-smart business.
2

Ein Beitrag zum energie- und kostenoptimierten Betrieb von Rechenzentren mit besonderer Berücksichtigung der Separation von Kalt- und Warmluft

Hackenberg, Daniel 07 February 2022 (has links)
In der vorliegenden Arbeit wird eine simulationsbasierte Methodik zur Energie- und Kostenoptimierung der Kühlung von Rechenzentren mit Kalt-/Warmluft-Separation vorgestellt. Dabei wird die spezifische Charakteristik der Luftseparation für einen wesentlich einfacheren und schnelleren Simulationsansatz genutzt, als das mit herkömmlichen, strömungsmechanischen Methoden möglich ist. Außerdem wird der Energiebedarf des Lufttransports – einschließlich der IT-Ventilatoren – in der Optimierung berücksichtigt. Beispielhaft entwickelte Komponentenmodelle umfassen die IT-Systeme und alle für die Kühlung relevanten Anlagen in einer dem aktuellen Stand der Technik entsprechenden Ausführung. Die besonders wichtigen Aspekte Freikühlbetrieb und Verdunstungskühlung werden berücksichtigt. Anhand verschiedener Konfigurationen eines Modellrechenzentrums wird beispielhaft die Minimierung der jährlichen verbrauchsgebunden Kosten durch Anpassung von Temperatursoll- werten und anderen Parametern der Regelung demonstriert; bestehendes Einsparpotenzial wird quantifiziert. Da die Kalt-/Warmluft-Separation in modernen Installationen mit hoher Leistungsdichte auch Auswirkungen auf bauliche Anforderungen hat, wird ein für diesen Anwendungsfall optimiertes Gebäudekonzept vorgeschlagen und praktisch untersucht, das sich insbesondere durch Vorteile hinsichtlich Energieeffizienz, Flexibilität und Betriebssicherheit auszeichnet.:1 Einleitung 1.1 Motivation 1.2 Kategorisierung von Rechenzentren 1.3 Effizienzmetriken für Rechenzentren 1.4 Wissenschaftlicher Beitrag und Abgrenzung 2 Luftgekühlte IT-Systeme: Anforderungen und Trends 2.1 Anforderungen an das Raumklima 2.1.1 Lufttemperatur 2.1.2 Luftfeuchte 2.1.3 Luftzustand im Warmgang 2.1.4 Schalldruckpegel und Schadgase 2.1.5 Betriebsabläufe und Personal 2.2 Kühllasten 2.2.1 Leistungsbedarf der IT-Systeme 2.2.2 Lastgänge und Teillastbetrieb der IT-Systeme 2.2.3 Flächenspezifische Kühllasten 2.3 Leckströme 2.4 Entwicklungstendenzen 3 Rechenzentrumskühlung: Übliche Lösungen und Optimierungskonzepte 3.1 Anlagenkonzepte zur Entwärmung von Rechenzentren 3.1.1 Freie Kühlung 3.1.2 Maschinelle Kälteerzeugung 3.1.3 Umluftkühlung von Rechnerräumen 3.2 Umluftkühlung mit Separation von Kalt- und Warmluft 3.2.1 Konzept 3.2.2 Umsetzung 3.2.3 Regelung der Umluftkühlgeräte 3.2.4 Effizienzoptimierung durch Anhebung der Lufttemperatur 3.2.5 Betriebssicherheit 3.3 Modellbasierte Untersuchungen in der Literatur 3.4 Zwischenfazit 4 Modellbildung 4.1 Struktur des Modells und Ablauf der Simulation 4.2 Annahmen und Randbedingungen 4.3 Modellierung der IT-Systeme 4.3.1 Testsysteme und -software 4.3.2 Testaufbau und Messung der relevanten physikalischen Größen 4.3.3 Drehzahl der internen Ventilatoren 4.3.4 Leistungsaufnahme der internen Ventilatoren 4.3.5 Luftvolumenstrom 4.3.6 Leistungsaufnahme der IT-Systeme ohne Lüfter 4.3.7 Ausblastemperatur 4.4 Modellierung der Kühlsysteme 4.4.1 Pumpen, Rohrnetz und Ventilatoren 4.4.2 Wärmeübertrager 4.4.3 Umluftkühlgeräte 4.4.4 Pufferspeicher 4.4.5 Kältemaschinen 4.4.6 Rückkühlwerke 4.4.7 Freie Kühlung 4.5 Regelstrategien, Sollwertvorgaben und Lastprofile 4.5.1 Kaltluft 4.5.2 Kaltwasser 4.5.3 Kühlwasser 4.5.4 Kälteerzeuger 4.5.5 Lastprofil der IT-Systeme 4.5.6 Wetterdaten 4.5.7 Standortspezifische Kosten für sonstige Betriebsstoffe 4.6 Validierung der Simulationsumgebung 4.6.1 Stichprobenartige experimentelle Prüfung der ULKG-Modellierung 4.6.2 Stichprobenartige experimentelle Prüfung der Modellierung der Kälteerzeugung 4.6.3 Plausibilitätskontrolle und Modellgrenzen 4.7 Zwischenfazit 5 Variantenuntersuchungen und Ableitung von Empfehlungen 5.1 Konfiguration und ausgewählte Betriebspunkte des Modellrechenzentrums 5.2 Optimierung des Jahresenergiebedarfs mit konstanten Kühlmedientemperaturen 5.2.1 Jahresenergiebedarf des Modell-RZs und Optimierung nach Best Practices 5.2.2 Bestimmung der optimalen (konstanten) ULKG-Ausblastemperatur 5.2.3 Einfluss von Last und Typ der IT-Systeme 5.2.4 Einfluss von Standortfaktoren 5.2.5 Einsparpotenzial Pumpenenergie 5.3 Optimierung mit variablen Kühlmedientemperaturen, RKW trocken 5.3.1 Dynamische Sollwertschiebung der Luft- und Kaltwassertemperaturen 5.3.2 Sollwertschiebung der Kühlwassertemperaturen im Kältemaschinenbetrieb 5.3.3 Kombination der Optimierungen und Übertragung auf andere Standorte 5.4 Optimierung mit variablen Kühlmedientemperaturen, RKW benetzt 5.4.1 Dynamische Sollwertschiebung der Luft- und Kaltwassertemperaturen 5.4.2 Optimierung eines modifizierten Modells ohne Kältemaschinen 5.4.3 Betriebssicherheit der Konfiguration ohne Kältemaschinen 5.4.4 Optimierung der Betriebssicherheit durch Eisspeicher 5.5 Zwischenfazit 6 Vorstellung und Diskussion eines neuen Gebäudekonzepts für Rechenzentren 6.1 Gebäudekonzepte und Anforderungen an Sicherheit, Effizienz und Flexibilität 6.1.1 Limitierungen klassischer Konstruktionsprinzipien 6.1.2 Alternative Konzepte für Umluftkühlung in Rechenzentren 6.1.3 Rechenzentren mit Installationsgeschoss statt Doppelboden 6.2 Plenum statt Doppelboden: Konzept und Umsetzung 6.2.1 Aufgabenstellung und konzeptionelle Anforderungen 6.2.2 Lösung mit dem Plenums-Konzept 6.2.3 Anforderungen an die Regelung der Umluftkühlgeräte 6.3 Experimentelle Leistungsbestimmung und Optimierung 6.3.1 Testaufbau und Messung der relevanten physikalischen Größen 6.3.2 Regelung von Luftvolumenstrom und -Temperatur bei konstanter Last 6.3.3 Optimierung der Kaskadenschaltung der Umluftkühlgeräte bei Lastwechseln 6.3.4 Optimierung der Betriebssicherheit der Umluftkühlung bei Stromausfällen 6.3.5 Ermittlung der Leistungsgrenzen 6.4 Zwischenfazit und weiteres Optimierungspotenzial 7 Zusammenfassung und Ausblick

Page generated in 0.1019 seconds