• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 338
  • 241
  • 175
  • 28
  • 16
  • 14
  • 14
  • 13
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1043
  • 183
  • 116
  • 113
  • 102
  • 96
  • 92
  • 84
  • 72
  • 70
  • 63
  • 63
  • 61
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
661

Luminescence of Benzonitrile, Monodeuterobenzonitriles, and Perdeuterobenzoitrile at 77°K in Solid Matrices

LeBel, Guy Laurent 11 1900 (has links)
An abstract is not provided. / Thesis / Master of Science (MSc)
662

TIMING OF THE EMPLACEMENT OF ANCIENT COASTAL DEPOSITS OF GEORGIA AIDED BY GROUND PENETRATING RADAR AND DETERMINED BY OPTICALLY STIMULATED LUMINESCENCE AND ELECTRON SPIN RESONANCE OPTICAL DATING

Hendricks, Robert R. January 2016 (has links)
ESR, OSL and TT-OSL dating methods were applied to samples collected from six of the Ancient Coastal Deposits (ACDs) along the southern Georgia Coastline. Samples were collected from the Princess Anne (the youngest and most seaward ACD), Pamlico, Talbot, Penholoway, Wicomico, and Okefenokee ACDs with the goal of determining the age of formation of these features. Ground Penetrating Radar (GPR) was used to determine the subsurface morphology and target lithologies for age determination. OSL and TT-OSL dating was attempted on samples collected from the youngest two ACDs, the Pamlico and Princess Anne, at McMaster Universities AGE Lab. ESR samples collected from all of the ACDs studied were measured at Florida State University as well as Osaka University. ESR analysis measured the Al signal, the Ti-Li signal, measured using two different methods, as well as the Ti-H signal. A number of low additive dose points were added to the ESR dose plan to attempt to create a better dose response curve for the low saturating Ti-H signal in attempt to better utilize the signal. While the geochronological methodology did not prove useful for determining the age of all of the ACDs it did result in depositional age estimates for the Cypresshead Formation at 433-2978 ka and Satilla Formations at 243-417 ka using the Ti-Li ESR signal as a maximum age estimate. The GPR, ESR, and core data all point to the conclusion that the ACDs of the Georgia Coast are geomorphic modifications and not the result of a unique depositional process. Based on the discrepancy between the depositional age of the Cypresshead and Satilla Formations as determined by ESR in this study and the ages of the ACDs published by others from Georgia (Markewich et.al., 2013) or other areas of the Atlantic Coast (Wehmiller, 2004; Willis, 2006) it can be concluded that paleo sea-levels modified the Cypresshead and Satilla Formations in to the morphology seen today at some point after their initial deposition. / Dissertation / Doctor of Philosophy (PhD) / ESR, OSL and TT-OSL dating methods were applied to samples collected from six of the Ancient Coastal Deposits (ACDs) along the southern Georgia Coastline with the goal of determining the age of formation of these features. Ground Penetrating Radar (GPR) was used to determine the subsurface morphology and target lithologies for age determination. A number of low additive dose points were added to the ESR dose plan to attempt to create a better dose response curve for the low-dose saturation of the Ti-H signal in attempt to better utilize the signal. While the geochronological methodology did not prove useful for determining the age of all of the ACDs, it did result in depositional age estimates for the Cypresshead Formation at 433-2978 ka and Satilla Formations at 243-417 ka. The GPR, ESR, and core data all point to the conclusion that the ACDs of the Georgia Coast are geomorphic features without unique depositional events.
663

Novel Techniques For Selective Doping Of Silicon Carbide For Device Applications

Krishnan, Bharat 11 December 2009 (has links)
Superior properties of Silicon Carbide (SiC), such as wide bandgap, high breakdown field and high thermal conductivity, have made it the frontrunner to replace Silicon for applications requiring high breakdown strength, mechanical and radiation hardness. Commercial SiC devices are already available, although their expected performance has not yet been realized due to a few problems related to device fabrication technologies, such as selective doping. This work explores non-traditional techniques for SiC doping (and selective doping in particular) based on previously unknown types of defect reactions in SiC and novel epitaxial growth techniques, which offer advantages over currently available technologies. Recent developments in SiC epitaxial growth techniques at MSU have enabled the growth of high quality SiC epitaxial layers at record low temperatures of 1,300°C. Lower growth temperatures have enabled highly doped epilayers for device applications. Prototypes of SiC PiN diodes fabricated, demonstrated low values of the series resistance associated with anodes grown by the low temperature epitaxial growth technique. At room temperature, 100 ìm-diameter diodes with a forward voltage of 3.75 V and 3.23V at 1,000 A/cm2 before and after annealing were achieved. The reverse breakdown voltage was more than 680 V on average, even without surface passivation or edge termination. Reduced growth temperatures also enabled the possibility of selective epitaxial growth (SEG) of SiC with traditional masks used in the SEG in Si technology. Previously, SEG of SiC was impossible without high temperature masks. Good quality, defect free, selectively grown 4H-SiC epilayers were obtained using SiO2 mask. Nitrogen doped selectively grown epilayers were also obtained, which were almost completely ohmic, indicating doping exceeding 1x1019 cm-3. Moreover, conductivity modulation via defect reactions in SiC has been reported as a part of this work for the first time. The approach is based on a new phenomenon in SiC, named Recombination Induced Passivation (RIP), which was observed when hydrogenated SiC epilayers were subjected to above bandgap optical excitation. Additional acceptor passivation, and thereby modification of the conductivity of the epilayer, was observed. Results of investigations of the RIP process are presented, and conductivity modulation techniques based on the RIP process are proposed.
664

Late Quaternary Landscape Evolution and Tectonic Geomorphology of the Lower Ohio River Valley, USA

Counts, Ronald C. January 2013 (has links)
No description available.
665

Nanofiber Based Optical Sensors for Oxygen Determination

Xue, Ruipeng 10 October 2014 (has links)
No description available.
666

SELF-QUENCHING AND CROSS-QUENCHING REACTIONS OF PLATINUM(II) DIIMINE COMPLEXES

FLEEMAN, WENDI LEIGH January 2003 (has links)
No description available.
667

IMPRINT OF CONTINENTAL-GLACIER EROSION OVER SPACE AND TIME: THREE EXAMPLES FROM OHIO, USA

STEWART, ALEXANDER KNOX January 2007 (has links)
No description available.
668

Growth, Characterization and Luminescence and Optical Properties of Rare-Earth Elements and Transition Metals Doped in Wide Bandgap Nitride Semiconductors

Maqbool, Muhammad January 2005 (has links)
No description available.
669

The Luminescence prosperties of the wide bandgap nitrides doped with rare earth ions and gallium nitride doped with conventional isoelectornic impurities

Jadwisienczak, Wojciech M. January 2001 (has links)
No description available.
670

CdTe, CdTe/CdS Core/Shell, and CdTe/CdS/ZnS Core/Shell/Shell Quantum Dots Study

Yan, Yueran 18 April 2012 (has links)
No description available.

Page generated in 0.0664 seconds