1 |
Thermal Analysis of a Permanent Magnet Assisted Synchronous Reluctance Motor Using Lumped Parameter Thermal ModelingHerbert, Joseph January 2017 (has links)
No description available.
|
2 |
Experimental and Modeling Study of the Thermal Management of Li-ion Battery PacksWang, Haoting 13 October 2017 (has links)
This work reports the experimental and numerical study of the thermal management of Li-ion battery packs under the context of electric vehicle (EV) or hybrid EV (HEV) applications. Li-ion batteries have been extensively demonstrated as an important power source for EVs or HEVs. However, thermal management is a critical challenge for their widespread deployment, due to their highly dynamic operation and the wide range of environments under which they operate. To address these challenges, this work developed several experimental platforms to study adaptive thermal management strategies. Parallel to the experimental effort, multi-disciplinary models integrating heat transfer, fluid mechanics, and electro-thermal dynamics have been developed and validated, including detailed CFD models and lumped parameter models. The major contributions are twofold. First, this work developed actively controlled strategies and experimentally demonstrated their effectiveness on a practical sized battery pack and dynamic thermal loads. The results show that these strategies effectively reduced both the parasitic energy consumption and the temperature non-uniformity while maintaining the maximum temperature rise in the pack. Second, this work established a new two dimensional lumped parameter thermal model to overcome the limitations of existing thermal models and extend their applicable range. This new model provides accurate surface and core temperatures simulations comparable to detailed CFD models with a fraction of the computational cost. / Ph. D. / Li-ion batteries have been widely used today as power source of electric vehicles (EV) or hybrid electric vehicles (HEV). Thermal management represents an important issue for the safe and efficiency of Li-ion batteries in EVs and HEVs. Thermal issues can lead to decreased energy efficiency, reduced battery lifetime, and even catastrophic failures. However, effective thermal management of Li-ion batteries is challenging due to several reasons, including the highly dynamic operation of the batteries and the wide range of ambient conditions under with the vehicles operate. To address these challenges, this work studied the thermal management problem through both experimental and numerical methods. Experimentally, actively controlled strategies have been designed and tested on our customized experimental platforms, and the results demonstrated the effectiveness such strategies. Numerically, multidisciplinary models have been developed and validated to provide comprehensive information of battery operation, and furthermore to simulate operation under extreme conditions that are difficult study experimentally. This dissertation reports both the experimental and numerical results, with a detailed analysis of their implications and applications.
|
3 |
Thermal Analysis and Management of High-Performance Electrical MachinesNategh, Shafigh January 2013 (has links)
This thesis deals with thermal management aspects of electric machinery used in high-performance applications with particular focus put on electric machines designed for hybrid electric vehicle applications. In the first part of this thesis, new thermal models of liquid (water and oil) cooled electric machines are proposed. The proposed thermal models are based on a combination of lumped parameter (LP) and numerical methods. As a first case study, a permanent-magnet assisted synchronous reluctance machine (PMaSRM) equipped with a housing water jacket is considered. Particular focus is put on the stator winding and a thermal model is proposed that divides the stator slot into a number of elliptical copper and impregna- tion layers. Additionally, an analysis, using results from a proposed simplified thermal finite element (FE) model representing only a single slot of the sta- tor and its corresponding end winding, is presented in which the number of layers and the proper connection between the parts of the LP thermal model representing the end winding and the active part of winding are determined. The approach is attractive due to its simplicity and the fact that it closely models the actual temperature distribution for common slot geometries. An oil-cooled induction machine where the oil is in direct contact with the stator laminations is also considered. Here, a multi-segment structure is proposed that divides the stator, winding and cooling system into a number of an- gular segments. Thereby, the circumferential temperature variation due to the nonuniform distribution of the coolant in the cooling channels can be predicted. In the second part of this thesis, the thermal impact of using different winding impregnation and steel lamination materials is studied. Conven- tional varnish, epoxy and a silicone based thermally conductive impregnation material are investigated and the resulting temperature distributions in three small induction machines are compared. The thermal impact of using different steel lamination materials is investigated by simulations using the developed thermal model of the water cooled PMaSRM. The differences in alloy con- tents and steel lamination thickness are studied separately and a comparison between the produced iron losses and the resulting hot-spot temperatures is presented. Finally, FE-based approaches for estimating the induced magnet eddycurrent losses in the rotor of the considered PMaSRM are reviewed and compared in the form of a case study based on simulations. A simplified three-dimensional FE model and an analytical model, both combined with time-domain 2D FE analysis, are shown to predict the induced eddy current losses with a relatively good accuracy compared to a complete 3D FE based model. Hence, the two simplified approaches are promising which motivates a possible future experimental verification. / <p>QC 20130528</p>
|
Page generated in 0.4206 seconds