• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 26
  • 10
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 173
  • 170
  • 76
  • 28
  • 27
  • 24
  • 21
  • 21
  • 19
  • 17
  • 16
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Relationships among progesterone, estradiol-17β, 13, 14-dihydro-15-keto-prostaglandin F₂α and prostaglandin F₂α in intact ewes around the time of luteolysis

Fortin, Suyapa 25 November 2009 (has links)
The exact mechanisms controlling uterine secretion of prostaglandin F₂α (PGF₂α) are not known. This study (Experiments 1, 2 and 3) was conducted to evaluate the relationships of progesterone and estrogen to changes in 13,14-dihydro-15-keto-prostaglandin F₂α (PGFM) and PGF₂α in ewes. Experiment 1 was designed to determine whether a radioimmunoassay (RIA) for progesterone would detect pessary-released 6α-methyl-17α-hydroxy-progesterone (MPA; n=3) and oral 17α-acetoxy-6-methyl-16-methylene-4, 6-pregnadiene-3, 20 dione (MGA; n=3) in blood plasma of ovariectomized ewes. Neither progestogen treatment interfered with the RIA. Experiment 2 was conducted to answer the question: Do MPA-containing pessaries delay luteolysis in intact ewes? Ewes were treated with MPA containing (n=10) or blank pessaries (controls; n=8) from d 7 and until d 18 of the estrous cycle for control and until d 22 for MPA-treated ewes; d 0 was the day of estrus. Blood samples were collected from the jugular vein throughout the experiment. Pessaries containing MPA did not affect the timing of luteolysis (d 15.4 ± .2), but they prolonged (P<.O5) the interestrous interval (17.5 d for control vs 24.1 d for MPA-treated ewes). Experiment 3 was designed to study the relationships among progesterone, estrogen, PGFM and PGF₂α in ewes. Ewes were treated with MPA-containing (n=7; 60 mg), progesterone-containing (n=8i 45 mg) or blank pessaries (n=8) from d 7 until d 20 of the estrous cycle. From d 14 and continuing until 24 h after estrus, jugular and vena caval blood samples were collected during two sampling periods daily. Plasma was assayed for progesterone, estrogen, PGFM and PGF₂α. Treatment did not affect the profiles of change in concentration of progesterone, PGFM and jugular PGF₂α, but treatment affected (P < .05) estrogen and vena caval PGF₂α profiles. Overall, treatment affected (P < .05) the mean concentrations of estrogen, progesterone, PGFM and PGF₂α. sampling site (jugular vs. vena cava) affected (P < .0001) the mean concentration of progesterone, estrogen and PGF₂α, but site did not affect PGFM concentrations. Hormonal relationships associated with changes in release of PGF₂α were evaluated. Estrogen seemed to be the primary hormone controlling PGF₂α release. In conclusion, MPA treatment did not delay the timing of luteolysis, but it increased the interestrous interval. Of the compounds measured, estrogen accounted for the greatest proportion of the variation in PGF₂α release in ewes around the time of luteolysis. / Master of Science
52

Seasonal cycle of gonadal steroidogenesis and the effects of luteinizing hormone and luteinizing hormone releasing hormone on thein vitro and in vivo steroidal secretions in monopterus albus

Chen, Hui, 陳慧 January 1989 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
53

Potential mechanisms linking nutrition and neuroendocrine control of reproduction in the sheep

Dobbins, Adam Bradley. January 2004 (has links)
Thesis (M.S.)--West Virginia University, 2004. / Title from document title page. Document formatted into pages; contains iv, 124 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 82-124).
54

Attempts to induce puberty in beef heifers with luteinizing hormone-releasing hormone

Skaggs, Chris L. January 1984 (has links)
Call number: LD2668 .T4 1984 S585 / Master of Science
55

Functional characterisation and translational applications of kisspeptin-10

George, Jyothis Thomas January 2012 (has links)
Background: Kisspeptins, recently discovered hypothalamic neuropeptides encoded by the KISS1 gene, are essential for normal pubertal development and are modulated by diverse endocrine, metabolic and environmental signals. Exogenous kisspeptin administration potently stimulates LH secretion - by direct action on GnRH neurons while kisspeptin antagonists inhibit pulsatile LH secretion. Human studies of kisspeptin had hitherto used kisspeptin-54 that is cleaved further and the smallest bioactive form is a decapeptide (kisspeptin-10) with a shorter half-life. Kisspeptin-10 is thus putatively more attractive in studies assessing LH pulsatility and is also the basis for the development of antagonists. Unmet clinical needs: Decreased LH pulse frequency is the central pathology in pubertal delay, late-onset male hypogonadism and hypothalamic amenorrhoea. Manipulation of LH pulse frequency also has therapeutic potential in contraception, PCOS and sex-steroid dependant diseases such as endometriosis and prostatic hyperplasia. Hypothesis: That exogenous kisspeptin-10 enhances pulsatile LH secretion in healthy men and in patients with reproductive disorders associated with decreased pulse frequency. Research strategy: A first-in-human dose escalation study of kisspeptin-10 was performed in men and subsequently replicated in women. An intravenous infusion regime was optimised in healthy men and subsequently applied to hypogonadal patients. Specific questions were addressed sequentially as summarised below with key results. Dose escalation study: Question: Does kisspeptin-10 stimulate LH secretion in men? Findings: Six iv bolus doses (0.01 to 3 μg/kg) of GMP kisspeptin-10 and vehicle were administered at least a week apart to six healthy men. Rapid increase in LH, with peak concentrations was seen by 45 min post injection in all volunteers. There was a clear dose-dependent increase in LH concentrations in response to kisspeptin- 10 (P <0.0001). Area-Under-Curve analysis over 60 min following kisspeptin-10 administration showed 0.3 and 1μg/kg doses to be maximally stimulatory (P <0.01) with a reduced response at 3 μg/kg. Assessing the effect of steroid milieu: Question: Steroid feedback is central to the regulation of LH secretion: what effect does the steroid milieu have on LH responses to kisspeptin-10? Findings: The response to iv kisspeptin-10 (0.3μg/kg,) in the normal follicular phase (n=10) was compared with that in the presence of low endogenous sex steroids/high LH secretion (6 postmenopausal women) and in women taking combined contraceptive therapy (n=8) with suppressed LH secretion. Despite widely varying baseline secretion, LH increased significantly following kisspeptin-10 administration in the follicular phase (6.3±1.2 to 9.4±1.3 IU/L P=0.006), postmenopausal (35.3±2.8 to 44.7±3.4 IU/L P=0.005), etonogestrel (4.6±0.2 to 7.5±0.9 IU/L, P=0.02), and COCP groups (2.2±0.9 to 3.7±1.4 IU/L P<0.001). Pulse frequency study: Question: GnRH and LH secretion are pulsatile: can kisspeptin-10 enhance LH pulsatility? Findings: Four healthy men attended our clinical research facility for two visits five days apart for 10-min blood sampling. At the first visit, baseline LH pulsatility was assessed over a 9-hour period. During the second visit, an infusion of kisspeptin-10 was administered for 9 hours at 1.5μg/kg/hr after an hour of baseline sampling. LH pulse frequency increased in all subjects, with a mean increase from 0.7±0.1 to 1.0±0.2 pulses/hr (P = 0.01), with resultant increase in mean LH from 5.2±0.8 IU/L at baseline to 14.1±1.7 IU/L (P <0.01). High dose, longer duration infusion study: Question: Can kisspeptin-10 enhance testosterone secretion? Findings: Four healthy men attended our clinical research facility for a 34-hour supervised stay. Blood samples were collected at 10 min intervals for two 12 hour periods on consecutive days and hourly overnight. After 10.5 hours of baseline sampling a continuous intravenous infusion of kisspeptin-10 (4μg/kg/hr) was maintained for 22.5 hrs. Mean LH increased from 5.5±0.8 at baseline to 20.9±4.9 IU/L (P <0.05) and serum testosterone increased from 16.6±2.4 to 24.0±2.5 nmol/L (P <0.001). Translational studies in hypogonadal men with type 2 diabetes Question: Can kisspeptin-10 normalise testosterone secretion in hypogonadal men? Findings: Five hypogonadal men with T2DM (age 33.6±3 yrs, BMI 40.6±6.3, testosterone 8.5±1.0 nmol/L, LH 4.7±0.7 IU/L, HbA1c <8 %, duration of diabetes <5 yrs) and seven age matched healthy men were studied. Kisspeptin-10 was administered intravenous (0.3 μg/kg) with frequent (10-min) blood sampling. Mean LH increased in controls (5.5±0.8 to 13.9±1.7 IU/L P <0.001) and in T2DM (4.7±0.7 to 10.7±1.2 IU/L P=0.02) with comparable ΔLH (P=0.18). Baseline serum sampling for LH at 10-min intervals and hourly testosterone measurements were performed subsequently in four T2DM men for 12 hours. An intravenous infusion of kisspeptin-10 (4 μg/kg/hr) was administered 5 days later for 11 hours, with increases in serum LH (3.9±0.1 IU/L to 20.7±1.1 IU/L (P=0.03,) and testosterone (8.5±1.0 to 11.4±0.9 nmol/L, P=0.002). LH pulse frequency at baseline was lower in hypogonadal men with diabetes (0.6±0.1 vs. 0.8±0.1 pulses/hr, P=0.03) and increased to 0.9±0 pulses/hr (P=0.05). Translational studies in pubertal delay: Question: Defective Neurokinin B activity is associated with pubertal delay and the hierarchical interactions between kisspeptins and Neurokinin B remain to be elucidated: can kisspeptin-10 stimulate LH secretion with impaired Neurokinin B signalling? Findings: Four patients with TAC3 or TACR3 inactivating mutations presenting with delayed puberty were admitted for two 12 hr blocks of blood sampling every 10 min with vehicle (saline) or kisspeptin-10 (1.5 μg/kg/hour) infused intravenously. Mean LH and LH pulses frequency increased with kisspeptin-10 (P<0.05). However, four patients with Kallmann syndrome (with defective GnRH neuron migration), studied in parallel, did not respond, suggesting a potential diagnostic application for kisspeptin-10 in pubertal dysfunction. Conclusions In first-in-man studies of kisspeptin-10, it was demonstrated that endogenous LH pulse frequency can be enhanced in healthy men. The therapeutic potential of this finding in common reproductive endocrine disorders associated with decreased LH pulse frequency, i.e., late-onset male hypogonadism and pubertal dysfunction, was suggested in subsequent studies. Furthermore, kisspeptin signalling occurs upstream of GnRH neurons and is independent of Neurokinin B signalling in the central regulation of the hypothalamic-pituitary-gonadal axis.
56

Role of gonadotropin-releasing hormone of metastatic potential of ovarian cancer cells

Cheung, Wai-ting, 張慧婷 January 2009 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
57

Molecular studies of gonadotropin releasing hormone receptors and estrogen receptors in goldfish (Carassius auratus)

馬智謙, Ma, Chi-him, Eddie. January 2000 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
58

Direct ovarian steroid regulation of pituitary luteinizing hormone secretion, stores and subunit mRNA.

Girmus, Ronald Leslie January 1992 (has links)
The ovarian steroids, progesterone and estradiol, regulate luteinizing hormone synthesis and secretion during the estrous cycle of mature ewes. During the luteal phase of the cycle the ovarian steroids inhibit luteinizing hormone secretion. Luteinizing hormone is secreted from the pituitary when stimulated by the hypothalamic neuropeptide, gonadotropin-releasing hormone. Ovarian steroids can inhibit luteinizing hormone secretion indirectly, by decreasing the secretion of gonadotropin-releasing hormone or directly, by modulating the response of the pituitary to gonadotropin-releasing hormone. These studies have examined the direct control of pituitary luteinizing hormone secretion by using an in vivo model in which endogenous gonadotropin-releasing hormone (GnRH) release has been ablated and replaced with exogenous GnRH release at a constant frequency. Progesterone directly inhibited pituitary LH secretion in an estradiol-dependent manner and this may not require inhibition of pituitary LH synthesis. Progesterone inhibition of pituitary luteinizing hormone secretion is associated with enhanced progesterone binding by the pituitary.
59

Differential functions of FSH and LH in zebrafish ovary. / Differential functions of follicle-stimulating hormone and luteinizing hormone in zebrafish ovary / CUHK electronic theses & dissertations collection

January 2009 (has links)
Although much more work needs to be done to elucidate the functional roles of FSH and LH in fish reproduction, the preset study provides a relatively comprehensive study for us to understand the potential roles of FSH and LH during ovarian development in fish, especially the importance of FSH. / At the same time, functional studies were carried out to examine and compare bioactivities of the CHO-derived zfFSH and zfLH in zebrafish ovary, which is the major part of the present project. The following aspects were covered to investigate the actions of zfFSH and zfLH: steroidogenesis and folliculogenesis. / Both recombinant zfGTHs stimulated activin betaA expression but slightly suppressed activin betaB expression. During short-term treatment, zfFSH and zfLH exhibited similar stimulatory effects on activin betaA expression; the effect of zfLH became more prominent after 24 h treatment while zfFSH had little effect. / Previously, our laboratory had established two stable Chinese hamster ovary (CHO) cell lines expressing recombinant zebrafish FSH (zfFSH) and LH (zfLH). However, the production yields are very low. Therefore, the present study tried to adopt the yeast Pichia pastoris as another bioreactor to produce recombinant zfFSH and zfLH. Two different forms of expression vectors for a native form and a fusion form carrying a His-tag, respectively, were constructed for each hormone. Their bioactivities were monitored and confirmed by receptor-based reporter gene assays as well as ovarian fragment incubation. As expected, the native form exhibited much higher activities than the fusion form. / The pituitary gonadotropins (GTHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are the key hormones controlling vertebrate reproduction. Although the two gonadotropins have been characterized in numerous teleost species, our understanding of their biological functions remains rather limited. This is largely due to the lack of pure form of homologous gonadotropins and inadequate understanding of gonadal physiology in most species studied as well as species variation of hormone actions. The present study aims at systematically investigating the functional roles of FSH and LH in the ovary using zebrafish as the model. Zebrafish is becoming more and more popular as the model of reproductive and developmental studies due to several advantages. First, though its body size is small, its ovary is relatively large and available all the year around. Second, zebrafish spawns everyday and its development is fast. Last but not least, its bioinformatics information is tremendous compared to other fish models. / We investigated the effects of zfFSH and zfLH on steroidogenesis by examining the regulation of aromatase by these two hormones. Aromatase catalyzes the conversion of androgens into estrogens during steroidogenesis. Both recombinant zfGTHs stimulated the aromatase expression during short-term treatment (8 h) in ovarian fragment culture, with zfFSH much more potent than zfLH. However, zfFSH continued to exhibit powerful effect on aromatase expression after 24 h treatment while zfLH had little effect at all. The stimulatory effect of zfFSH on aromatase expression was time-, dose- and stage-dependent and was also confirmed by in vivo study. Furthermore, it was also zfFSH but not zfLH that significantly stimulated StAR protein expression during short-term treatment. StAR protein is critical to steroidogenesis by facilitating the movement of cholesterol across the mitochondrial membrane. / zfLH was found to be able to induce GVBD in zebrafish, as demonstrated in other fish species. However, our preliminary data showed that zfFSH was also involved in this process. To our knowledge, this is the first time to demonstrate that homologous FSH induces GVBD in teleosts. / Yu, Xiaobin. / Adviser: Wei Ge. / Source: Dissertation Abstracts International, Volume: 70-09, Section: B, page: . / Thesis submitted in: December 2008. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 152-181). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
60

Activation of Gonadotropin-releasing hormone neurons by Kisspeptin in the mouse

Clarkson, Jenny, n/a January 2008 (has links)
The gonadotropin-releasing hormone (GnRH) neurons are the final output neurons of a complex neuronal network that controls fertility in all mammals. The GnRH neurons reside in a scattered continuum throughout the anterior hypothalamus. The majority of GnRH neurons project an axon to the median eminence where GnRH is secreted into the hypophyseal-pituitary portal vessels from whence it travels to the anterior pituitary gland. GnRH acts on the gonadotrophs of the anterior pituitary gland to cause the secretion of luteinising hormone (LH) and follicle stimulating hormone (FSH) into the peripheral circulation. LH and FSH act on the gonads to control gametogenesis and steroidogenesis. This thesis focuses on two unanswered questions in reproductive neurobiology that are fundamental to fertility 1) how the GnRH neurons become activated at puberty to produce patterned GnRH secretion and 2) the nature of the positive feedback mechanism that drives the preovulatory GnRH and LH surges. Recently, a novel neuropeptide called kisspeptin and its G-protein coupled receptor GPR-54 were found to be essential for pubertal activation of GnRH neurons, with GPR-54 mutation or deletion resulting in failed puberty and infertility in humans and mice. In addition, kisspeptin administration potently stimulates GnRH neuron-mediated gonadotropin secretion and advances the onset of pubertal maturation suggesting an important role for kisspeptin in the activation and perhaps post-pubertal modulation of GnRH neurons. In this thesis I have used immunocytochemical, whole animal manipulations and knockout mouse approaches to investigate the role of kisspeptin in both the activation of GnRH neurons at puberty and in the estrogen positive feedback mechanism in the mouse. I have demonstrated that kisspeptin neurons are located principally in the rostral periventricular area of the third ventricle (RP3V) and the arcuate nucleus (ARN), which are both known to be important areas for the modulation of GnRH neuronal activity. Kisspeptin fibres are found in abundance throughout the hypothalamus, but of particular interest are the kisspeptin fibres found in close apposition with a subset of GnRH neurons in the rostral preoptic area (rPOA). The kisspeptin neurons in the RP3V are sexually dimorphic with up to ten times more neurons in the female than the male. The number of kisspeptin neurons in the RP3V increases throughout pubertal development reaching adult levels at the time of puberty in both males and females. In concert with the increase in the number of kisspeptin neurons in the RP3V there is an increase in the percentage of GnRH neurons in the rPOA which exhibited a close apposition with a kisspeptin fibre indicating that kisspeptin neurons may target GnRH neurons to activate them at puberty. Additionally, I demonstrate that the increase in the number of neurons in the RP3V of the female mouse approaching puberty is driven by estrogen secreted from the ovary. A significant number of kisspeptin neurons in the RP3V were shown to express tyrosine hydroxylase (TH). The number and percentage of kisspeptin cells colocalised with TH cells in the RP3V did not change throughout the estrous cycle. Some colocalisation of kisspeptin and TH was observed at terminal appositions with GnRH neurons in the rPOA, though the magnitude of colocalisation also did not change throughout the estrous cycle. I demonstrate that RP3V kisspeptin neurons are a critical part of the estrogen positive feedback mechanism which drives the preovulatory GnRH and LH surges. Kisspeptin neurons in the RP3V express steroid receptors and are activated by estrogen positive feedback. Loss of kisspeptin-GPR-54 signalling prevents the GnRH neurons from being activated by estrogen positive feedback indicating that the RP3V kisspeptin neurons not only contribute to the estrogen positive feedback mechanism, but are a critical component of the mechanism. The results of these studies demonstrate that kisspeptin is an integral component in both the activation of GnRH neurons at puberty and in the estrogen positive feedback mechanism which drives the preovulatory GnRH and LH surges. Therefore, kisspeptin plays an important role in the neuroendocrine control of reproduction in the mouse.

Page generated in 0.0462 seconds