1 |
Energy Cost Optimization for Strongly Stable Multi-Hop Green Cellular NetworksLiao, Weixian 11 December 2015 (has links)
Last decade witnessed the explosive growth in mobile devices and their traffic demand, and hence the significant increase in the energy cost of the cellular service providers. One major component of energy expenditure comes from the operation of base stations. How to reduce energy cost of base stations while satisfying users’ soaring demands has become an imperative yet challenging problem. In this dissertation, we investigate the minimization of the long-term time-averaged expected energy cost while guaranteeing network strong stability. Specifically, considering flow routing, link scheduling, and energy constraints, we formulate a time-coupling stochastic Mixed-Integer Non-Linear Programming (MINLP) problem, which is prohibitively expensive to solve. We reformulate the problem by employing Lyapunov optimization theory and develop a decomposition based algorithm which ensures network strong stability. We obtain the bounds on the optimal result of the original problem and demonstrate the tightness of the bounds and the efficacy of the proposed scheme.
|
2 |
Real-time Integration of Energy StorageGupta, Sarthak 28 August 2017 (has links)
Increasing dynamics in power systems on account of renewable integration, electric vehicle penetration and rising demands have resulted in the exploration of energy storage for potential solutions. Recent technology- and industry-driven developments have led to a drastic decrease in costs of these storages, further advocating their usage. This thesis compiles the author's research on optimal integration of energy storage. Unpredictability is modelled using random variables favouring the need of stochastic optimization algorithms such as Lyapunov optimization and stochastic approximation. Moreover, consumer interactions in a competitive environment implore the need of topics from game theory. The concept of Nash equilibrium is introduced and methods to identify such equilibrium points are laid down. Utilizing these notions, two research contributions are made. Firstly, a strategy for controlling heterogeneous energy storage units operating at different timescales is put forth. They strategy is consequently employed optimally for arbitrage in an electricity market consisting of day-ahead and real-time pricing. Secondly, energy storages owned by consumers connected to different nodes of a power distribution grid are coordinated in a competitive market. A generalized Nash equilibrium problem is formulated for their participation in arbitrage and energy balancing, which is then solved using a novel emph{weighted} Lyapunov approach. In both cases, we design real-time algorithms with provable suboptimality guarantees in terms of the original centralized and equilibrium problems. The algorithms are tested on realistic scenarios comprising of actual data from electricity markets corroborating the analytical findings. / Master of Science / Modern power system, which is responsible for generation and transport of electricity, is witnessing a lot of changes such as the increased adoption of wind and solar energy, promotion of electric vehicles, and ever increasing consumer demands. Amidst such developments, energy storage devices like batteries are being propagated as a necessary addition to the power system for its safe operation. This has been further supported by the decrease in prices of these devices over time. An effective assimilation of energy storage however, requires extensive mathematical studies on account of unpredictable renewable generation and consumer demands.This thesis focuses upon the preceding concern. To this note, two novel research contributions are made. In the first, an individual consumer is modeled who wishes to reduce his/her energy costs by simultaneously employing energy storages belonging to different technologies. In the latter, a more challenging multi-consumer interaction is reviewed where multiple end consumers wish to reduce costs while competing against each other over limited resources. In either of the cases, efficient algorithms are designed that are shown to produce desirable results over real-life data and have mathematically provable performance guarantees.
|
3 |
Optimal Power Allocation and Scheduling of Real-Time Data for Cognitive RadiosJanuary 2016 (has links)
abstract: In this dissertation, I propose potential techniques to improve the quality-of-service (QoS) of real-time applications in cognitive radio (CR) systems. Unlike best-effort applications, real-time applications, such as audio and video, have a QoS that need to be met. There are two different frameworks that are used to study the QoS in the literature, namely, the average-delay and the hard-deadline frameworks. In the former, the scheduling algorithm has to guarantee that the packet's average delay is below a prespecified threshold while the latter imposes a hard deadline on each packet in the system. In this dissertation, I present joint power allocation and scheduling algorithms for each framework and show their applications in CR systems which are known to have strict power limitations so as to protect the licensed users from interference.
A common aspect of the two frameworks is the packet service time. Thus, the effect of multiple channels on the service time is studied first. The problem is formulated as an optimal stopping rule problem where it is required to decide at which channel the SU should stop sensing and begin transmission. I provide a closed-form expression for this optimal stopping rule and the optimal transmission power of secondary user (SU).
The average-delay framework is then presented in a single CR channel system with a base station (BS) that schedules the SUs to minimize the average delay while protecting the primary users (PUs) from harmful interference. One of the contributions of the proposed algorithm is its suitability for heterogeneous-channels systems where users with statistically low channel quality suffer worse delay performances. The proposed algorithm guarantees the prespecified delay performance to each SU without violating the PU's interference constraint.
Finally, in the hard-deadline framework, I propose three algorithms that maximize the system's throughput while guaranteeing the required percentage of packets to be transmitted by their deadlines. The proposed algorithms work in heterogeneous systems where the BS is serving different types of users having real-time (RT) data and non-real-time (NRT) data. I show that two of the proposed algorithms have the low complexity where the power policies of both the RT and NRT users are in closed-form expressions and a low-complexity scheduler. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2016
|
4 |
Radio resource management in device-to-device and vehicle-to-vehicle communication in 5G networks and beyondAshraf, M. I. (Muhammad Ikram) 29 November 2019 (has links)
Abstract
Future cellular networks need to support the ever-increasing demand of bandwidth-intensive applications and interconnection of people, devices, and vehicles. Small cell network (SCN)-based communication together with proximity- and social-aware connectivity is conceived as a vital component of these networks to enhancing spectral efficiency, system capacity, and quality-of-experience (QoE). To cope with diverse application needs for the heterogeneous ecosystem, radio resource management (RRM) is one of the key research areas for the fifth-generation (5G) network. The key goals of this thesis are to develop novel, self-organizing, and low-complexity resource management algorithms for emerging device-to-device (D2D) and vehicle-to-vehicle (V2V) wireless systems while explicitly modeling and factoring network contextual information to satisfy the increasingly stringent requirements. Towards achieving this goal, this dissertation makes a number of key contributions.
First, the thesis focuses on interference management techniques for D2D-enabled macro network and D2D-enabled SCNs in the downlink, while leveraging users’ social-ties, dynamic clustering, and user association mechanisms for network capacity maximization. A flexible social-aware user association technique is proposed to maximize network capacity. The second contribution focuses on ultra-reliable low-latency communication (URLLC) in vehicular networks in which interference management and resource allocation techniques are investigated, taking into account traffic and network dynamics. A joint power control and resource allocation mechanism is proposed to minimize the total transmission power while satisfying URLLC constraints.
To overcome these challenges, novel algorithms are developed by combining several methodologies from graph theory, matching theory and Lyapunov optimization. Extensive simulations validate the performance of the proposed approaches, outperforming state-of-the-art solutions. Notably, the results yield significant performance gains in terms of capacity, delay reductions, and improved reliability as compared with conventional approaches. / Tiivistelmä
Tulevaisuuden solukkoverkkojen pitää pystyä tukemaan yhä suurempaa kaistanleveyttä vaativia sovelluksia sekä yhteyksiä ihmisten, laitteiden ja ajoneuvojen välillä. Piensoluverkkoihin (SCN) pohjautuvaa tietoliikennettä yhdistettynä paikka- ja sosiaalisen tietoisuuden huomioiviin verkkoratkaisuihin pidetään yhtenä elintärkeänä osana tulevaisuuden solukkoverkkoja, joilla pyritään tehostamaan spektrinkäytön tehokkuutta, järjestelmän kapasiteettia sekä kokemuksen laatua (QoE). Radioresurssien hallinta (RRM) on eräs keskeisistä viidennen sukupolven (5G) verkkoihin liittyvistä tutkimusalueista, joilla pyritään hallitsemaan heterogeenisen ekosysteemin vaihtelevia sovellustarpeita. Tämän väitöstyön keskeisinä tavoitteina on kehittää uudenlaisia itseorganisoituvia ja vähäisen kompleksisuuden resurssienhallinta-algoritmeja laitteesta-laitteeseen (D2D) ja ajoneuvosta-ajoneuvoon (V2V) toimiville uusille langattomille järjestelmille, sekä samalla mallintaa ja tuottaa verkon kontekstikohtaista tietoa vastaamaan koko ajan tiukentuviin vaatimuksiin. Tämä väitöskirja edistää näiden tavoitteiden saavuttamista usealla keskeisellä tuloksella.
Aluksi väitöstyössä keskitytään häiriönhallinnan tekniikoihin D2D:tä tukevissa makroverkoissa ja laskevan siirtotien piensoluverkoissa. Käyttäjän sosiaalisia yhteyksiä, dynaamisia ryhmiä sekä osallistamismekanismeja hyödynnetään verkon kapasiteetin maksimointiin. Verkon kapasiteettia voidaan kasvattaa käyttämällä joustavaa sosiaaliseen tietoisuuteen perustuvaa osallistamista. Toinen merkittävä tulos keskittyy huippuluotettavaan lyhyen viiveen kommunikaatioon (URLLC) ajoneuvojen verkoissa, joissa tehtävää resurssien allokointia ja häiriönhallintaa tutkitaan liikenteen ja verkon dynamiikka huomioiden. Yhteistä tehonsäädön ja resurssien allokoinnin mekanismia ehdotetaan kokonaislähetystehon minimoimiseksi samalla, kun URLLC rajoitteita noudatetaan.
Jotta esitettyihin haasteisiin voidaan vastata, väitöstyössä on kehitetty uudenlaisia algoritmeja yhdistämällä graafi- ja sovitusteorioiden sekä Lyapunovin optimoinnin menetelmiä. Laajat tietokonesimuloinnit vahvistavat ehdotettujen lähestymistapojen suorituskyvyn, joka on parempi kuin uusimmilla nykyisillä ratkaisuilla. Tulokset tuovat merkittäviä suorituskyvyn parannuksia erityisesti kapasiteetin lisäämisen, viiveiden vähentämisen ja parantuneen luotettavuuden suhteen verrattuna perinteisiin lähestymistapoihin.
|
5 |
Learning-based methods for resource allocation and interference management in energy-efficient small cell networksSamarakoon, S. (Sumudu) 07 November 2017 (has links)
Abstract
Resource allocation and interference management in wireless small cell networks have been areas of key research interest in the past few years. Although a large number of research studies have been carried out, the needs for high capacity, reliability, and energy efficiency in the emerging fifth-generation (5G) networks warrants the development of methodologies focusing on ultra-dense and self-organizing small cell network (SCN) scenarios. In this regard, the prime motivation of this thesis is to propose an array of distributed methodologies to solve the problem of joint resource allocation and interference management in SCNs pertaining to different network architectures.
The present dissertation proposes and investigates distributed control mechanisms for wireless SCNs mainly in three cases: a backhaul-aware interference management mechanism of the uplink of wireless SCNs, a dynamic cluster-based approach for maximizing the energy efficiency of dense wireless SCNs, and a joint power control and user scheduling mechanism for optimizing energy efficiency in ultra-dense SCNs. Optimizing SCNs, especially in the ultra-dense regime, is extremely challenging due to the severe coupling in interference and the dynamics of both queues and channel states. Moreover, due to the lack of inter-base station/cluster communications, smart distributed learning mechanisms are required to autonomously choose optimal transmission strategies based on local information. To overcome these challenges, an array of distributed algorithms are developed by combining the tools from machine learning, Lyapunov optimization and mean-field theory.
For each of the above proposals, extensive sets of simulations have been carried out to validate the performance of the proposed methods compared to conventional models that fail to account for the limitations due to network scale, dynamics of queue and channel states, backhaul heterogeneity and capacity constraints, and the lack of coordination between network elements. The results of the proposed methods yield significant gains of the proposed methods in terms of energy savings, rate improvements, and delay reductions compared to the conventional models studied in the existing literature. / Tiivistelmä
Langattomien piensoluverkkojen resurssien allokointi ja häiriön hallinta on ollut viime vuosina tärkeä tutkimuskohde. Tutkimuksia on tehty paljon, mutta uudet viidennen sukupolven (5G) verkot vaativat suurta kapasiteettia, luotettavuutta ja energiatehokkuutta. Sen vuoksi on kehitettävä menetelmiä, jotka keskittyy ultratiheisiin ja itseorganisoituviin piensoluverkkoihin. (SCN). Tämän väitöskirjan tärkein tavoite onkin esittää joukko hajautettuja menetelmiä piensoluverkkojen yhteisten resurssien allokointiin ja häiriön hallintaan, kun käytössä on erilaisia verkkoarkkitehtuureja.
Tässä väitöskirjassa ehdotetaan ja tutkitaan hajautettuja menetelmiä langattomien piensoluverkkojen hallintaan kolmessa eri tilanteessa: välityskanavan huomioiva häiriönhallinta menetelmä langattomissa piensoluverkoissa, dynaamisiin klustereihin perustuva malli tiheiden langattomien piensoluverkkojen energiatehokkuuden maksimointiin ja yhteinen tehonsäädön ja käyttäjien allokaatio menetelmä ultratiheiden piensoluverkkojen energiatehokkuuden optimointiin. Ultratiheiden piensoluverkkojen optimointi on erittäin haastavaa häiriön sekä jonojen ja kanavatilojen vahvojen kytkösten vuoksi. Lisäksi, koska klustereilla/tukiasemilla ei ole kommunikaatiota, tarvitaan hajautettuja oppimisalgoritmeja, jotta saadaan itsenäisesti valittua optimaaliset lähetys menetelmät hyödyntäen vain paikallista tietoa. Tämän vuoksi kehitetään useita hajautettuja algoritmeja, jotka hyödyntävät koneoppimista, Lyapunov optimointia ja mean-field teoriaa.
Kaikki yllä olevat esitetyt menetelmät on validoitu laajoilla simulaatioilla, joilla on voitu todentaa niiden suorituskyky perinteisiin malleihin verrattuna. Perinteiset mallit eivät pysty ottamaan huomioon verkon laajuuden, jonon ja kanavatilojen dynamiikan, eri välityskanavien ja rajallisen kapasiteetin asettamia rajoituksia sekä verkon elementtien välisen koordinoinnin puuttumista. Esitetyt menetelmät tuottavat huomattavia parannuksia energiansäästöön, siirtonopeuteen ja viiveiden vähentämiseen verrattuna perinteisiin malleihin, joita kirjallisuudessa on tarkasteltu.
|
6 |
Efficiency and security in data-driven applicationsZhang, Kaijin, ZHANG 04 June 2018 (has links)
No description available.
|
7 |
Cross Layer Design in MIMO Multi-cell Systems / Conception de Mecanismes Inter-couches dans les Systemes MIMO Multi-cellulairesLakshminarayana, Subhash 06 December 2012 (has links)
Les prévisions relatives trafic de données au sein des systèmes de communications sans-fil suggèrent une croissance exponentielle, principalement alimentée par l’essor de transferts vidéo mobiles. Etant donné la nature soudaine et fluctuante des demandes de transfert vidéo, il faut dès à présent réfléchir à de nouveaux algorithmes d’allocation de ressources performants. En effet, les algorithmes en couche physique traditionnels, qui réalisent de l’allocation de ressources sous l’hypothèse classique que les transmetteurs sont toujours saturés avec des bits d’information, risquent à l’avenir de s’avérer inefficients. Pour cette raison, les algorithmes de demain se doivent d’être dynamiques, dans le sens où ils seront capables de prendre en compte la nature stochastique des fluctuations du trafic de données et qu’ils intégreront des informations issus de processus de couches supérieures.L’idée centrale de cette thèse est de développer des algorithmes, travaillant avec des informations issues de la couche PHY et de la couche NET, dans un scénario Multi-cells et MIMO (Multiple Inputs, Multiple Outputs).Plus particulièrement, nous considérons un réseau de stations de base (BS) équipés avec plusieurs antennes, chargés de servir plusieurs terminaux mobiles équipés d’une seule antenne (UT) dans leurs cellules respectives. Ce qui nous différencie des travaux précédents, c’est que nous tenons compte de l’aléa avec lequel des demandes de transferts peuvent arriver et que, pour cette raison, nous modélisons la formation de queue de données au niveau des stations de base. Dans cette disposition, nous développons plusieurs algorithmes multicouches, réalisant de l’allocation de ressources décentralisée, et ce, dans une optique d’efficacité énergétique. En particulier, il s’agit ici de réaliser des algorithmes réalisant du beamforming de façon décentralisée et capables de contrôler des fluctuations de trafic, des algorithmes optimisant l’efficacité énergétique sous une contrainte de qualité de service moyenne, des algorithmes de planification décentralisés dans des scénarios multi-cellulaires. Dans cette perspective, nous choisissons de recourir non seulement à des outils d’optimisation de la théorie de Lyapunov, mais également à la théorie des matrices aléatoires et à la théorie du contrôle stochastique. / Future wireless communication systems are expected to see an explosion in the wireless traffic which is mainly fueled by mobile video traffic. Due to the time varying and bursty nature of video traffic, wireless systems will see a widerrange of fluctuations in their traffic patterns. Therefore, traditional physical layer based algorithms which perform resource allocation under the assumption that the transmitters are always saturated with information bits, might no longer be efficient. It is, thus, important to design dynamic resource allocation algorithms which can incorporate higher layer processes and account for the stochastic nature of the wireless traffic.The central idea of this thesis is to develop cross-layer design algorithmsbetween the physical and the network layer in a multiple input multiple output (MIMO) multi-cell setup. Specifically, we consider base stations (BSs) equipped with multiple antennas serving multiple single antenna user terminals (UTs) in their respective cells. In contrast to the previous works, we consider the randomness in the arrival of information bits and hence account for the queuing at the BSs. With this setup, we develop various cross-layer based resource allocation algorithms. We incorporate two important design considerations namely decentralized design and energy efficiency. In particular, we focus on developing decentralized beamforming and traffic flow controller design, energy efficient design under time average QoS constraints and decentralized scheduling strategy in a multi-cell scenario. To this end, we use tools from Lyapunov optimization, random matrix theory and stochastic control theory.
|
8 |
Utilisation des communications Device-to-Device pour améliorer l'efficacité des réseaux cellulaires / Use of Device-to-Device communications for efficient cellular networksIbrahim, Rita 04 February 2019 (has links)
Cette thèse étudie les communications directes entre les mobiles, appelées communications D2D, en tant que technique prometteuse pour améliorer les futurs réseaux cellulaires. Cette technologie permet une communication directe entre deux terminaux mobiles sans passer par la station de base. La modélisation, l'évaluation et l'optimisation des différents aspects des communications D2D constituent les objectifs fondamentaux de cette thèse et sont réalisés principalement à l'aide des outils mathématiques suivants: la théorie des files d'attente, l'optimisation de Lyapunov et les processus de décision markovien partiellement observable POMDP. Les résultats de cette étude sont présentés en trois parties. Dans la première partie, nous étudions un schéma de sélection entre mode cellulaire et mode D2D. Nous dérivons les régions de stabilité des scénarios suivants: réseaux cellulaires purs et réseaux cellulaires où les communications D2D sont activées. Une comparaison entre ces deux scénarios conduit à l'élaboration d'un algorithme de sélection entre le mode cellulaire et le mode D2D qui permet d'améliorer la capacité du réseau. Dans la deuxième partie, nous développons un algorithme d'allocation de ressources des communications D2D. Les utilisateurs D2D sont en mesure d'estimer leur propre qualité de canal, cependant la station de base a besoin de recevoir des messages de signalisation pour acquérir cette information. Sur la base de cette connaissance disponibles au niveau des utilisateurs D2D, une approche d'allocation des ressources est proposée afin d'améliorer l'efficacité énergétique des communications D2D. La version distribuée de cet algorithme s'avère plus performante que celle centralisée. Dans le schéma distribué des collisions peuvent se produire durant la transmission de l'état des canaux D2D ; ainsi un algorithme de réduction des collisions est élaboré. En outre, la mise en œuvre des algorithmes centralisé et distribué dans un réseau cellulaire, type LTE, est décrite en détails. Dans la troisième partie, nous étudions une politique de sélection des relais D2D mobiles. La mobilité des relais représente un des principaux défis que rencontre toute stratégie de sélection de relais. Le problème est modélisé par un processus contraint de décision markovien partiellement observable qui prend en compte le dynamisme des relais et vise à trouver la politique de sélection de relais qui optimise la performance du réseau cellulaire sous des contraintes de coût. / This thesis considers Device-to-Device (D2D) communications as a promising technique for enhancing future cellular networks. Modeling, evaluating and optimizing D2D features are the fundamental goals of this thesis and are mainly achieved using the following mathematical tools: queuing theory, Lyapunov optimization and Partially Observed Markov Decision Process (POMDP). The findings of this study are presented in three parts. In the first part, we investigate a D2D mode selection scheme. We derive the queuing stability regions of both scenarios: pure cellular networks and D2D-enabled cellular networks. Comparing both scenarios leads us to elaborate a D2D vs cellular mode selection design that improves the capacity of the network. In the second part, we develop a D2D resource allocation algorithm. We observe that D2D users are able to estimate their local Channel State Information (CSI), however the base station needs some signaling exchange to acquire this information. Based on the D2D users' knowledge of their local CSI, we provide an energy efficient resource allocation framework that shows how distributed scheduling outperforms centralized one. In the distributed approach, collisions may occur between the different CSI reporting; thus, we propose a collision reduction algorithm. Moreover, we give a detailed description on how both centralized and distributed algorithms can be implemented in practice. In the third part, we propose a mobile relay selection policy in a D2D relay-aided network. Relays' mobility appears as a crucial challenge for defining the strategy of selecting the optimal D2D relays. The problem is formulated as a constrained POMDP which captures the dynamism of the relays and aims to find the optimal relay selection policy that maximizes the performance of the network under cost constraints.
|
Page generated in 0.1204 seconds