• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Symbolic and connectionist learning techniques for grammatical inference

Alquézar Mancho, René 12 May 1997 (has links)
This thesis is structured in four parts for a total of ten chapters. The first part, introduction and review (Chapters 1 to 4), presents an extensive state-of-the-art review of both symbolic and connectionist GI methods, that serves also to state most of the basic material needed to describe later the contributions of the thesis. These contributions constitute the contents of the rest of parts (Chapters 5 to 10). The second part, contributions on symbolic and connectionist techniques for regular grammatical inference (Chapters 5 to 7), describes the contributions related to the theory and methods for regular GI, which include other lateral subjects such as the representation oí. finite-state machines (FSMs) in recurrent neural networks (RNNs).The third part of the thesis, augmented regular expressions and their inductive inference, comprises Chapters 8 and 9. The augmented regular expressions (or AREs) are defined and proposed as a new representation for a subclass of CSLs that does not contain all the context-free languages but a large class of languages capable of describing patterns with symmetries and other (context-sensitive) structures of interest in pattern recognition problems.The fourth part of the thesis just includes Chapter 10: conclusions and future research. Chapter 10 summarizes the main results obtained and points out the lines of further research that should be followed both to deepen in some of the theoretical aspects raised and to facilitate the application of the developed GI tools to real-world problems in the area of computer vision.

Page generated in 0.1184 seconds