Spelling suggestions: "subject:"médicaments.cette"" "subject:"médicaments.la""
1 |
Design, development, and validation of chitosan-based coating via catechol oxidation for controlled drug releaseVeloso, Felipe Da Silva 20 December 2024 (has links)
Les cathéters veineux centraux (CVC) sont largement utilisés pour administrer des chimiothérapies, des hémodialyses et d'autres traitements. Généralement fabriqués en polydiméthylsiloxane (PDMS), ces dispositifs médicaux présentent un risque intrinsèque d'infection en raison de la formation possible d'un biofilm, augmentant ainsi le risque de complications, également connues sous le nom d'infections sanguines associées aux cathéters centraux (CLABSI). Les revêtements polymères libérant des médicaments constituent une stratégie bien connue pour lutter contre la formation de biofilms. Toutefois, la stabilité du revêtement sur le substrat au fil du temps constitue un défi majeur. Par conséquent, ce travail vise à développer un revêtement à base de chitosane conçu pour avoir une adhérence et une stabilité maximales afin d'assurer une libération soutenue des médicaments et des propriétés antibactériennes au fil du temps. Un revêtement composé de chitosane (CS) comme vecteur de médicament, d'acide caféique (CA) et de sulfate de cuivre (Cu) comme réticulants, et de moxifloxacine (Mox) comme antibiotique, a été déposé par un processus de coulée et de revêtement par immersion sur une surface de PDMS fonctionnalisée. Un facteur crucial pour la stabilité du revêtement est l'environnement dans lequel il sera implanté. À notre connaissance, l'étude de la stabilité du revêtement sous écoulement (c'est-à-dire sous contrainte de cisaillement) et en présence d'un milieu pseudo-physiologique qui imite le plasma humain dans de telles conditions n'a pas encore été abordée dans la littérature. Les résultats ont montré que le chitosane sans la présence de réticulants (formulation de contrôle) n'est pas en mesure d'assurer une libération contrôlée et une activité antibactérienne prolongée contre *E. coli* et *S. aureus*. En revanche, la formulation optimisée a pu démontrer une activité antibactérienne pendant 21 jours, sans toxicité pour les fibroblastes dermiques humains, et a montré une plus grande force d'adhésion que la formulation de contrôle. En comparant la formulation de contrôle à la formulation optimisée, il est évident qu'en optimisant l'enrobage à base de chitosane, sa stabilité dans le temps a également été optimisée par rapport à la formulation de contrôle. Ces résultats encouragent donc l'application de la technologie développée ici pour produire des revêtements antibactériens à base de chitosane pour les CVC en PDMS afin de lutter contre les infections nosocomiales à répétition, ainsi qu'une méthode originale développée pour vérifier la stabilité des revêtements *in vitro*, reproduisant certaines des conditions soumis *in vivo*. / Central venous catheters (CVCs) are largely used to administer chemotherapy, hemodialysis, and other treatments. Mostly made of polydimethylsiloxane (PDMS), these medical devices present an intrinsic risk of infection due to the possible formation of biofilm, thus increasing the risk of complications, also known as Central line-associated bloodstream infection (CLABSI). Drug-releasing polymer coatings are a well-recognized strategy for combating biofilm formation. However, the coating's stability on the substrate throughout time is a major challenge. Therefore, this work aims to develop a chitosan-based coating designed to have maximum adhesion and stability to ensure sustained drug release and antibacterial properties over time. A coating composed of chitosan (CS) as a drug carrier, caffeic acid (CA) and copper sulphate (Cu) as crosslinkers, and moxifloxacin (Mox) as an antibiotic, was deposited through a casting and dip-coating process onto functionalized PDMS surface. A crucial factor for the stability of the coating is the environment in which it will be implanted. As far as we know, the study of coating stability under flow (i.e. shear stress) and in the presence of a pseudo-physiological medium that mimics human plasma under such conditions has not yet been addressed in the literature. The results showed that chitosan without the presence of crosslinkers (control formulation) is not able to provide controlled release and prolonged antibacterial activity against *E. coli* and *S. aureus*. On the other hand, the optimized formulation was able to demonstrate antibacterial activity for up to 21 days, without demonstrating toxicity to human dermal fibroblasts and showed greater adhesion strength than the control formulation. By comparing the control formulation with the optimized formulation, it was evident that the later had increased stability over time. Thus, these results encourage the application of the technology developed here to produce antibacterial coatings based on chitosan for CVCs made of PDMS to control CLABSI, as well as an original method developed for checking the stability of coatings *in vitro*, mimicking some of the conditions reported *in vivo*.
|
2 |
ENROBAGES POLYMERIQUES DE FORMES SOLIDES: CARACTERISATION ET OPTIMISATIONMuschert, Susanne 04 December 2008 (has links) (PDF)
Les dispersions aqueuses de polymère sont couramment utilisées dans l'industrie pharmaceutique pour pelliculer les formes galéniques destinées à la voie orale et permettre une libération contrôlée du principe actif. Il est nécessaire de faire attention à la stabilité à long terme des films au cours du stockage et d'éviter une diminution des taux de principe actif libéré par continuation de la coalescence des particules de polymère. L'idée de ce travail était d'ajouter un second composant approprié aux dispersions aqueuses d'éthyle cellulose afin d'améliorer la formation du film et la stabilité à long terme et d'ajuster facilement les cinétiques de libération désirées.<br />Les objectifs de cette étude sont : (i) de préparer et de caractériser en détail différents types de formes solides pelliculées ainsi que des films libres polymériques de composition identique aux pelliculages, (ii) de mieux comprendre les mécanismes de libération sous-jacents aux différentes formes solides pelliculées avec les dispersions aqueuses d'éthyle cellulose (EC) additionnées de petites quantités d'un second composant, et (iii) de proposer un moyen facile pour obtenir les cinétiques de libérations souhaitées et restant stables à long terme pour différents types de principes actifs et de noyaux de départ.<br />Différents types de noyaux de départ ont été étudiés : (i) des noyaux matriciels de principe actif avec un haute teneur en principe actif ; (ii) des noyaux de sucre montés avec du principe actif, qui peuvent générer une pression hydrostatique significative à l'intérieur du système une fois en contact avec des milieux aqueux ; (iii) des noyaux de cellulose microcristalline (MCC) (un matériau inerte) montés avec du principe actif, et (iv) des noyaux de sucre pelliculés avec de l'EC et montés ensuite avec du principe actif. Différents types de principe actif de différents solubilités aqueuses ont été étudiés : la théophylline, le paracétamol, le succinate de métoprolol et le chlorhydrate de diltiazem. Ces derniers ont été soit montés sur des noyaux de sucre, de MCC et de sucre pelliculés avec de l'EC, soit inclus dans des noyaux matriciels à différentes teneurs.<br />Pour maîtriser la libération du principe actif à partir de minigranules pelliculés avec de l'EC, des polymères hydrophiles tels que l'alginate de propylène glycol, le lambda-carraghénane et le copolymère d'acide polyvinylique et de polyéthylène glycol ont été ajoutés. Tous ont montrés une bonne compatibilité avec la dispersion aqueuse d'EC ; Aquacoat ECD 30. Les minigranules ont été pelliculés en lit d'air fluidisé, l'Aquacoat ECD étant plastifié avec 25 % m/m (basé sur le poids sec du polymère) de triéthyle citrate ou de dibutyl sébaçate. Après pelliculage, les minigranules sont soumis a un traitement thermique à différents temps, températures, et humidités relatives afin d'assurer une formation complète du film et d'obtenir une stabilité à long terme sous des conditions ambiantes ainsi que des conditions stress (suivant les recommandations ICH). Les cinétiques de libération sont réalisées dans un appareil à palettes dans des milieux simulant le contenu de l'estomac et de l'intestin grêle à température corporelle.<br /><br />Le mélange de la dispersion aqueuse d'EC avec les différents types de polymère hydrophile permet de fournir des cinétiques de libération contrôlées avec des conditions de pelliculage et de traitement thermique appropriés, et ce quelque soit le type de principe actif et de noyau de départ. Des cinétiques de libération d'ordre zéro ont notamment pu être obtenus dans le cas de matrices de théophylline pelliculés avec un mélange d'EC: copolymère de PVA-PEG à un ratio de 85:15. L'ajout d'alginate de propylène glycol conduit à des profils de libération du principe actif pH-dépendant. Ceci peut-être très utile pour compenser la diminution de solubilité pH-dépendante de bases faibles le long du tractus gastro-intestinal. Des profils de libération stables à long terme peuvent être obtenus avec des conditions de traitement thermique appropriées.<br />Les mécanismes de libération sous-jacents ont pu être élucidés en utilisant des solutions adéquates de la seconde loi de diffusion de Fick considérant les conditions respectives initiales et de « boundary ». De fins films polymériques ont été caractérisés part rapport à leur prise en eau et perte de masse sous exposition à différents milieux de libération et ont été utilisés pour déterminer le coefficient de diffusion apparent. La pression osmotique du milieu de libération a été variée afin d'évaluer l'impact de plus faible pressions osmotiques entre l'intérieur et l'extérieur des minigranules. Le gonflement du système a été également suivi au cours du temps sous ces conditions. Les cinétiques de libération à partir de minigranules individuels ont été menées et comparées à la libération d'un ensemble de minigranules. Le diamètre des minigranules restait environ constant au cours des 8 h d'observation, et ce quelque soit le type de noyau de départ. La pénétration continue de l'eau au sein des minigranules devrait générer une augmentation de la pression hydrostatique dans le système. Ceci pourrait alors conduire à une augmentation continue du diamètre des minigranules jusqu'à ce qu'une certaine valeur critique soit atteinte où la formation de fissures dans le pelliculage survient et le liquide interne est expulsé du système et le diamètre du minigranule diminue soudainement. On notera que ce type de comportement n'a pas été observé. Les cinétiques à partir des minigranules individuels étaient très similaires à l'ensemble de minigranules, indépendamment du type de noyau de départ et de milieu de libération. Ceci peut ne pas être nécessairement le cas, la cinétique finale observée peut être la somme de profils de libération de minigranules individuels très différents. Ainsi, il semble n'y avoir qu'un mécanisme de libération uniforme et la formation de fissures au cours du temps est improbable avec les systèmes étudiés. Cette hypothèse a été confortée par des images de microscopie électronique à balayage montrant des surfaces de minigranules lisses après exposition aux milieux de libération. La modélisation mathématique des cinétiques de libération à partir de fins films libres ainsi qu'à partir de minigranules pelliculés a révélé que les cinétiques de libération sont contrôlées par diffusion à travers une membrane polymérique intacte, ce qui est en bonne concordance avec les résultats expérimentaux.<br />L'étape de traitement thermique nécessaire à la formation de pelliculages stables à long terme a pu être minimisée pour les différents types de système, contenant des principes actifs peu et très solubles et pour différents types de noyaux.<br />L'addition de petites quantités d'un polymère hydrophile approprié à la dispersion aqueuse d'EC est un outil très efficace pour obtenir aisément les cinétiques de libération désirées et restant stables au cours du stockage et ce, même dans des conditions stress
|
3 |
Développement de formes orales divisées à libération prolongée par la technique de la pellétisation thermoplastiqueHamdani, Jamila 21 June 2005 (has links)
L’étude des caractéristiques physico-chimiques du Compritol® (béhénate de glycérol) et du Précirol® (palmito-stéarate de glycérol) a été effectuée. Les méthodes d’évaluation consistaient en la calorimétrie différentielle à balayage, la microscopie sur platine chauffante et la rhéologie dans un rhéomètre capillaire à pression variable. Cette étude a montré une évolution de la structure cristalline de ces deux corps gras en fonction du temps et de la température de stockage. En effet, ces composés, après fusion et refroidissement, « recristallisent » sous une structure partiellement amorphe, qui évolue avec le temps en structure cristalline. Il est également ressorti de cette évaluation que ces deux excipients lipidiques présentent des plages de fusion bien distinctes. Cette caractéristique est conservée lorsqu’ils sont en mélanges binaires. Enfin, ces corps gras se déforment sous l’action de fortes forces de cisaillement à des températures inférieures à leurs plages de fusion. <p>L’utilisation du Compritol® et du Précirol® comme corps gras lipophiles pour former des microbilles à libération prolongée a alors été envisagée. Nous avons procédé moyennant une technique de fabrication simple et rapide appelée « la pelletisation thermoplastique ». Il s’agit d’un procédé en une étape qui met à profit le pouvoir liant des corps gras facilement fusibles et se passe ainsi de l’usage de l’eau ou de solvants organiques. L’appareillage utilisé est de type mélangeur granulateur à haute vitesse. <p>Nous nous sommes basés sur les renseignements fournis par l’étude de préformulation afin d’optimaliser les conditions de fabrication des microbilles. Le contrôle de la température du mélange est très important pour la réussite du procédé de pelletisation thermoplastique. La vitesse du bras du mélangeur, la température de la double paroi et le temps de sphéronisation constituent les paramètres clés pour réussir la pelletisation du mélange. Nous avons mis au point des formulations contenant 15% (m/m) de Précirol® et une quantité croissante de Compritol® variant de 3 à 65 % (m/m). La libération du chlorhydrate de phényléphrine, employé comme agent traceur, a déjà été ralentie pour les formulations contenant 25 % (m/m) de corps gras. Face à ces résultats encourageants, nous avons mis au point des formulations contenant 75 % (m/m) de différents principes actifs (chlorhydrate de ciprofloxacine, théophylline et kétoprofène) et 25 % (m/m) de corps gras. Ces formulations ont abouti à la fabrication de microbilles à libération prolongée. Une étude de stabilité menée sur certaines des formes finies a montré la stabilité des microbilles lipidiques pour autant que le principe actif incorporé dedans ne soit par lui-même facilement dégradable. <p>Afin d’élargir le champ d’application du procédé de fabrication, nous avons mis au point des microbilles flottantes à libération prolongée. Les formulations proposées contiennent comme excipients :les deux corps gras, un mélange effervescent (bicarbonate sodique/ acide tartrique) et du Methocel K100. Leur flottabilité a été prouvée in vitro sur une période de plus de huit heures et In vivo par administration de microbilles de riboflavine flottantes versus non flottantes à des volontaires humains sains.<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
4 |
SYSTEMES POLYMERIQUES A BASE DE DISPERSION AQUEUSE ADMINISTRES PAR VOIE ORALE POUR LA LIBERATION CONTROLEE DU PRINCIPE ACTIFYang, Qiaowen 14 December 2009 (has links) (PDF)
Les dispersions aqueuses de polymères insolubles sont très largement utilisées pour pelliculer des formes galéniques destinées à la voie orale telles que des microgranules et permettre une libération contrôlée du principe actif. Ces dispersions aqueuses présentent l'avantage d'éviter l'emploi de solvants organiques mais impliquent un mécanisme de formation du film différent et plus complexe que lors de l'utilisation de solutions aqueuses de polymères, qui nécessite une étape de maturation complémentaire appelée curing (traitement thermique contrôlé avec ou sans humidité relative forcée). A ce jour, le processus de formation du film n'est pas encore complètement élucidé et mérite une investigation. Le premier objectif de ce travail a consisté à mieux comprendre les effets des conditions de curing sur la libération de microgranules enrobés avec une dispersion aqueuse de polymère. Le chlorhydrate de diltiazem est utilisé comme principe actif (PA) modèle. L'enrobage étudié est à base d'ethylcellulose plastifié par le triéthylcitrate (TEC), le dibutyl sebacate (DBS) ou des monoglycérides acétylés. Des variations de l'effet des conditions de curing sont observées en fonction du taux d'enrobage appliqué et du type de plastifiant utilisé. Les comportements complexes observés peuvent être attribués à deux phénomènes qui entrent en compétition : l'amélioration de la formation du film par coalescence des particules de polymères et la migration du PA à travers la membrane polymérique. Tous les systèmes étudiés présentent des profils qui n'évoluent pas après 6 mois de stockage en condition de stabilité accélérée à 40°C et 75% d'humidité relative (HR), lorsque des conditions de curing adéquates sont appliquées (24 h - 60°C - 75%HR). D'autre part, lorsque ce curing adéquat est appliqué, les profils de libération de principe actif sont similaires quel que soit le type de plastifiant utilisé. Les observations issues de l'étude sur microgranules enrobés montrent qu'il est parfois difficile d'anticiper le comportement des films d'enrobage en fonction du système étudié (association polymère/plastifiant, conditions de curing appliquées, épaisseur du film d'enrobage). Le deuxième objectif est d'évaluer l'intérêt de films libres comme modèle prédictif des performances de formes pharmaceutiques enrobées. Deux modèles de films libres sont étudiés : les films coulés et les films pulvérisés. Ces films sont caractérisés notamment par leurs propriétés thermiques, mécaniques et par la mesure de leur capacité d'hydratation et de leur perte en masse. Les résultats de l'étude des films libres sont mis en relation avec ceux de l'étude des profils de dissolution des microgranules enrobés. La confrontation des résultats obtenus sur films libres coulés et pulvérisés indique que le modèle le plus prédictif est le film libre obtenu par pulvérisation. Ce modèle est donc privilégié lors des études des enrobages à base de dispersion aqueuse de polymère. L'intérêt est ensuite porté sur la caractérisation des films libres de même composition que ceux des microgranules enrobés pour expliquer l'influence des conditions de curing en fonction du taux d'enrobage appliqué et du type de plastifiant utilisé. Quel que soit le type de plastifiant utilisé (soluble ou insoluble), les propriétés mécaniques des films révèlent qu'il y a amélioration de la résistance du film lorsqu'un curing de 60°C - 24 h - 75%RH est appliqué par rapport à celle d'un film ayant subi un curing de 60°C-1h. Ces résultats indiquent que la coalescence des particules de polymère n'est pas complète lorsqu'un curing de 60°C-1 h est appliqué. Ces résultats sont confirmés par les imageries obtenues par microscopie à force atomique (MFA) : la rugosité est plus prononcée après un curing d'1 h. D'autre part, les imageries obtenues par microspectroscopie Raman montrent également que les films ayant subi un curing insuffisant présentent une hétérogénéité de la distribution des constituants du film, et plus particulièrement de l'alcool cétylique, un stabilisant présent dans la dispersion aqueuse d'éthylcellulose. Ces résultats viennent conforter l'hypothèse de l'amélioration du film par coalescence des particules de polymères grâce au curing. Par ailleurs, lorsqu'un curing adéquat est appliqué, les cinétiques de prise en eau et de perte en masse sont similaires quel que soit le type de plastifiant utilisé, comme c'était déjà le cas pour les profils de libération du PA de microgranules enrobés.
|
Page generated in 0.0801 seconds