• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cortical stiffness : a gatekeeper for spindle positioning in mouse oocytes / Tension corticale et positionnement du fuseau dans l’ovocyte de souris

Chaigne, Agathe 04 July 2014 (has links)
Les divisions méiotiques sont très asymétriques en taille et génèrent une très grosse cellule, l'ovocyte, et deux petites cellules, les globules polaires. Cette asymétrie est permise par la migration du fuseau lors de la première division jusqu'au cortex le plus proche. Cette migration ne dépend pas des microbutules mais de la Myosin-II et d'un réseau de filaments d'actine nucléé par la coopération des nucléateurs de filaments droits Formin-2 et Spire1/2. Des observations préliminaires effectuées au laboratoire ont décrit un épaississement du cortex d'actine pendant la migration du fuseau, mais pourtant il avait été montré que la tension corticale, un paramètre décrivant la rigidité de l'ovocyte, diminue pendant la migration du fuseau. J'ai montré que cet épaississement est indispensable à la migration du fuseau et est nucléé par le nucléateur de filaments branchés Arp2/3, sous le contrôle de la voie Mos/MAPK. De plus, il provoque la diminution de la tension corticale en délocalisant la Myosin-II, ce qui est indispensable à la migration du fuseau. Finalement, j'ai montré que le chute de tension est un mécanisme d'amplification du déséquilibre des forces présent initialement (grâce au léger décentrage du noyau) qui déclenche la migration du fuseau. / Meiotic divisions are highly asymmetric divisions in size, generating a big cell, the oocyte, and two tiny cells, the polar bodies. This asymmetry is ensured by the migration of the first meiotic spindle to the closest cortex. This migration does not depend on microtubules but on Myosin-II and an F-actin meshwork nucleated by cooperation of straight filament nucleators Formin-2 and Spire1/2. Preliminary studies in the lab described a thickening of the F-actin cortex during spindle migration, but paradoxically cortical tension, a physical parameter describing the stiffness of the cell, drops during spindle migration. I have shown that this thickening is required for spindle migration and nucleated by the branched actin nucleator Arp2/3, under the control of the Mos/MAPK pathway. Furthermore, it promotes the decrease in cortical tension by triggering the delocalization of Myosin-II from the oocyte cortex, which is crucial for spindle migration. Finally, I have shown that the drop in cortical tension is an amplificatory mechanism to the initial unbalance of forces (due to a slight off-centered position of the nucleus) triggering the motion of the spindle.
2

The role of the kinetochore in chromosome segregation during Meiosis I

Turrin, Evelyne 12 1900 (has links)
La ségrégation des chromosomes est un processus complexe permettant la division égale du matériel génétique entre les cellules filles. Contrairement aux cellules somatiques, ce processus est sujet à des erreurs dans les cellules germinales telles que les ovocytes. Lorsque des erreurs surviennent lors de la ségrégation des chromosomes durant la méiose cela peut conduire à une aneuploïdie. L’aneuploïdie est la présence d’un nombre incorrect de chromosomes dans une cellule et est connue pour causer l’infertilité et des arrêts de grossesses chez l’humain. L’incidence de l’aneuploïdie augmente avec l’âge maternel (1). Le kinétochore est une structure cellulaire impliqué dans la ségrégation des chromosomes. Il est composé de plus de 100 protéines et se situe entre les microtubules et les centromères. Les microtubules se lient aux kinétochores, et ces derniers s’attachent sur les centromères afin de séparer les chromosomes homologues durant la méiose et les chromatides des sœurs pendant la mitose (1–3). Dans les cellules somatiques, cette structure est bien connue (2). Pourtant, moins d’informations sont connues à dans l’ovocyte de mammifère en développement au cours de la méiose I (3,4). Ce projet vise à étudier le rôle du kinétochore durant la ségrégation des chromosomes dans l’ovocyte de souris en développement. Plus spécifiquement, l’assemblage, le désassemblage, la dynamique et la tension des protéines du kinétochore seront évalués. Ce projet permettra de mieux comprendre le rôle du kinétochore durant la méiose I, ses implications durant la séparation des chromosomes, et éventuellement ses implications dans l’aneuploïdie. / Chromosome segregation is an intricate process in dividing genetic material equally between daughter cells. This process, unlike in somatic cells, is error prone in germ cells like the oocyte. When errors occur during meiosis in segregating chromosomes, aneuploidy results when the cell has an incorrect number of chromosomes. This can result in infertility and birth defects in human reproduction. The incidences of aneuploidy are also seen to increase with increasing maternal age (1). The kinetochore is a cellular structure at the heart of chromosome segregation. It is composed of more than 100 proteins and is located between the microtubules and the centromeres. The microtubules attach onto the kinetochores, which themselves attach onto the centromeres, in order to pull the homologous chromosomes apart during meiosis and the sister chromatids during mitosis (1–3). Much is known about this multi-protein structure in somatic cells (2). Yet, very little is known about this in the developing mammalian oocyte during Meiosis I (1,3,4). This project aims to investigate the role of the kinetochore in chromosome segregation in a developing mouse oocyte. More specifically, kinetochore protein assembly, disassembly, dynamics and tension will be assessed. This project will achieve a better understanding of the kinetochore’s role in Meiosis I, its implications in chromosome segregation in a developing mouse oocyte, and how it may be involved in aneuploidy.

Page generated in 0.0259 seconds