• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la polarisation et de la division asymétrique de l’ovocyte de souris / Polarization and asymmetric division in mouse oocyte

Dehapiot, Benoit 27 May 2014 (has links)
La méiose ovocytaire comprend une succession de deux divisions cellulaires, sans phase intermédiaire de réplication de l'ADN, permettant l'haploïdisation du gamète femelle en vue de la fusion des génomes parentaux lors de la fécondation. Le caractère fortement asymétrique de ces divisions permet l'expulsion du matériel génétique surnuméraire, dans de petits globules polaires, tout en conservant l'essentiel des ressources cytoplasmiques qui seront nécessaires au développement précoce de l'embryon. De nombreuses études réalisées sur l'ovocyte de souris ont mis en évidence les capacités intrinsèques du gamète à rompre sa symétrie en positionnant son fuseau de manière excentrée à proximité du cortex. En se positionnant de la sorte le fuseau induit, via un gradient de Ran-GTP porté par les chromosomes, une polarisation du cortex ovocytaire qui permettra de restreindre le site d'émission des futurs globules polaires. Cette polarisation se caractérise notamment par une forte accumulation de filaments d'actines dépendante du facteur de nucléation Arp2/3. Nos travaux nous ont permis de mettre en évidence le rôle de Cdc42-GTP, via l'activation de N-WASP, comme intermédiaire entre le gradient de Ran-GTP et la polymérisation polarisée des filaments d'actine. Nous nous sommes également intéressés à la localisation des protéines ERM (Ezrin Radixin Moesin), connues pour favoriser la formation des microvillosités membranaires. Dans l'ovocyte, les microvillosités et les ERM sont toutes deux exclues du cortex polarisé et nous avons pu démontrer le rôle de Ran-GTP dans ce processus. Enfin, nous avons étudié la localisation du réseau d'acto-myosine cortical lors de la deuxième division méiotique qui nécessite la rotation du fuseau de l'ovocyte de souris. Nos résultats révèlent l'existence de deux sous-populations de myosine 2 corticale, l'une dépendante de la chromatine (Ran-GTP/Cdc42-GTP) et l'autre dépendante du fuseau central (Ect2/RhoA). / Oocyte meiosis is accomplished through two successive rounds of cellular divisions, without DNA replication, allowing for gamete haploidization necessary for parental genome fusion after fertilization. These divisions are highly asymmetric and allow extra-DNA expulsion, in small polar bodies, while retaining most of the cytoplasmic resources needed for early embryo development. Studies in mouse oocyte have demonstrated the capabilities of the gamete to autonomously break his symmetry by positioning the spindle near the cortex. By doing so, the spindle is able to induce a cortical polarization that is dependent on a Ran-GTP gradient emanating from the chromosomes. This polarization will be necessary for delimiting extrusion sites of the future polar bodies. A polarized accumulation of Arp2/3 actin filaments is one of the most evident features of oocyte polarization. We have shown that polarization of Cdc42-GTP, trough N-WASP activation, is an essential intermediate between Ran-GTP and the polarized polymerization of actin filaments. We also investigated ERM (Ezrin Radixin Moesin) proteins localization that are known to promote microvilli assembly. According to our data, microvilli and ERM are excluded from the polarized cortex in a Ran-GTP dependent manner. Finally, we studied cortical acto-myosin dynamics during the second meiotic division which requires spindle rotation. We demonstrated the existence of two cortical myosin 2 sub-populations which depend either on chromosomes (Ran-GTP/Cdc42-GTP) or on the central spindle (Ect2/RhoA).
2

Formation et devenir de l'empreinte parentale chez la levure S. pombe / Formation and maintenance of the parental imprint in the yeast S. pombe

Raimondi, Célia 22 September 2017 (has links)
Des études moléculaires et génétiques ont montré qu'une empreinte épigénétique, située au niveau du locus sexuel (mat1) de la levure Schizosaccharomyces pombe, initie le changement de type sexuel. La réplication unidirectionnelle du locus mat1 permet la formation de l'empreinte sur le brin Watson. Les éléments moléculaires qui forment et protègent l'empreinte durant le cycle cellulaire restent peu connus. Afin de mieux comprendre le mécanisme de formation et de maintien de l'empreinte, j'ai caractérisé le recrutement au niveau du locus mat1 d'acteurs précoces dans le changement de type sexuel. J'ai montré que la protéine Sap1 (switch activating protein 1) est préférentiellement recrutée à l'intérieur de la séquence SS13, une séquence qui stabilise l'empreinte. Les protéines Lsd1/2 (lysine specific demethylases) qui contrôlent la pause de la fourche de réplication à mat1 et la formation de l'empreinte sont spécialement recrutées au niveau de mat1 indépendamment de l'allèle présent. La protéine Abp1 (homologue de CENP-B) est enrichie à côté de mat1 mais n'est pas impliquée dans la formation/maintien de l'empreinte. De plus, j'ai établi la signature de l'empreinte par séquençage à haut débit. En utilisant cette signature, j'ai mis en évidence que les protéines Lsd1/2 et Sap1 immunoprécipitent les deux côtés de la chromatide qui porte l'empreinte ce qui suggère la formation d'une structure protective définie comme l'imprintosome. / Genetic and molecular studies have indicated that an epigenetic imprint at mat1, the sexual locus of fission yeast, initiates mating type switching. The polar DNA replication of mat1 generates an imprint on the Watson strand. The process by which the imprint is formed and maintained through the cell cycle remains unclear. To understand better the mechanism of imprint formation and stability, we characterized the recruitment of early players of mating type switch at the mat1 region. We found that the switching activating protein 1 (Sap1) is preferentially recruited inside the mat1M allele on a sequence (SS13) that enhances the imprint. The lysine specific demethylases, Lsd1/2, that control the replication fork pause at MPS1 and the formation of the imprint are specifically drafted inside of mat1, regardless of the allele. The CENP-B homolog, Abp1, is highly enriched next to mat1 but it is not required in the process. Additionally, we established the computational signature of the imprint. Using this signature, we show that both sides of the imprinted molecule are bound by Lsd1/2 and Sap1, suggesting a nucleoprotein protective structure defined as imprintosome.
3

Cortical stiffness : a gatekeeper for spindle positioning in mouse oocytes / Tension corticale et positionnement du fuseau dans l’ovocyte de souris

Chaigne, Agathe 04 July 2014 (has links)
Les divisions méiotiques sont très asymétriques en taille et génèrent une très grosse cellule, l'ovocyte, et deux petites cellules, les globules polaires. Cette asymétrie est permise par la migration du fuseau lors de la première division jusqu'au cortex le plus proche. Cette migration ne dépend pas des microbutules mais de la Myosin-II et d'un réseau de filaments d'actine nucléé par la coopération des nucléateurs de filaments droits Formin-2 et Spire1/2. Des observations préliminaires effectuées au laboratoire ont décrit un épaississement du cortex d'actine pendant la migration du fuseau, mais pourtant il avait été montré que la tension corticale, un paramètre décrivant la rigidité de l'ovocyte, diminue pendant la migration du fuseau. J'ai montré que cet épaississement est indispensable à la migration du fuseau et est nucléé par le nucléateur de filaments branchés Arp2/3, sous le contrôle de la voie Mos/MAPK. De plus, il provoque la diminution de la tension corticale en délocalisant la Myosin-II, ce qui est indispensable à la migration du fuseau. Finalement, j'ai montré que le chute de tension est un mécanisme d'amplification du déséquilibre des forces présent initialement (grâce au léger décentrage du noyau) qui déclenche la migration du fuseau. / Meiotic divisions are highly asymmetric divisions in size, generating a big cell, the oocyte, and two tiny cells, the polar bodies. This asymmetry is ensured by the migration of the first meiotic spindle to the closest cortex. This migration does not depend on microtubules but on Myosin-II and an F-actin meshwork nucleated by cooperation of straight filament nucleators Formin-2 and Spire1/2. Preliminary studies in the lab described a thickening of the F-actin cortex during spindle migration, but paradoxically cortical tension, a physical parameter describing the stiffness of the cell, drops during spindle migration. I have shown that this thickening is required for spindle migration and nucleated by the branched actin nucleator Arp2/3, under the control of the Mos/MAPK pathway. Furthermore, it promotes the decrease in cortical tension by triggering the delocalization of Myosin-II from the oocyte cortex, which is crucial for spindle migration. Finally, I have shown that the drop in cortical tension is an amplificatory mechanism to the initial unbalance of forces (due to a slight off-centered position of the nucleus) triggering the motion of the spindle.
4

Division asymétrique et remodelage de la polarité épithéliale : dynamique de la polarisation des cellules précurseurs des organes sensoriels externes chez drosophila melanogaster / Asymmetric cell division and epithelial polarity remodeling : drosophila melanogaster external sensory organ precursor cell polarisation dynamic

Besson, Charlotte 22 September 2014 (has links)
Les divisions asymétriques permettent l’apparition de deux cellules filles différentes via la ségrégation polarisée de déterminants cellulaires pendant la division. La polarisation de la cellule mère est essentielle au bon déroulement des divisions asymétriques. Les précurseurs des organes sensoriels externes de la Drosophile (SOP) se divisent asymétriquement dans le plan de l’épithélium du thorax. La polarisation planaire des SOP dépend de la localisation asymétrique du complexe PAR (Baz-Par6-aPKC). Néanmoins, ces protéines sont aussi impliquées dans le maintient de la polarité apico-basale de l’épithélium. Les mécanismes régulant le remodelage de la polarité épithéliale, permettant la polarisation planaire du complexe PAR sont inconnus.Au cours de ma Thèse, j’ai développé une méthode d’analyse quantitative de la polarisation des protéines PAR au cours du temps. Je montre que Baz, Par6 et aPKC se sont asymétriques avant la mitose, et que cette polarisation dépend de la PCP (Planar Cell Polarity). J’ai également identifié Expanded (ex) et p120/catenin (p120ctn), dont l’expression est réduite dans les SOP, respectivement comme régulateurs de Crumbs et de la dynamique des jonctions. Leur inhibition promeut le remodelage de la polarité épithéliale et la polarisation des SOP.Un modèle de polarisation de la SOP est proposé, où l’inhibition spécifique d’ex et de p120ctn libère Par6-aPKC et Baz, permettant la formation du complexe PAR. Ce dernier interprète la PCP et devient asymétrique. Ainsi, ce travail relie la spécification de la SOP et sa division asymétrique, et propose un modèle général pour l’étude des divisions asymétriques dans les épithéliums. / During development, cell fate diversity can be generated by asymmetric cell division. As fate asymmetry can result from the unequal segregation at mitosis of cell fate determinants, polarization of the mother cell is essential for this process. The epithelial Sensory Organ Precursor cells (SOPs) divide asymmetrically within the plane of the notum epithelium in Drosophila. Planar polarization of mitotic SOPs critically depends on the asymmetric distribution of the PAR polarity complex. Nevertheless, PAR proteins are also involved in the maintenance of epithelial apico-basal polarity. When and how this epithelial polarity is remodelled to allow planar polarization of the PAR complex is unknown. During my thesis, I developed a quantitative live-imaging approach to monitor polarization of the PAR proteins. I showed that the three members of the PAR complex (Bazooka (Baz), Par6 and atypical Protein Kinase C (aPKC)) become planar polarized prior to mitosis and identified Planar Cell Polarity (PCP) as the initial symmetry breaking input. Expanded (Ex) and p120/catenin (p120ctn) were identified as SOP-specific regulators of Crumbs and AJ dynamics, respectively, that negatively regulate planar polarization in SOPs. This work led to a model whereby decreasing levels of Ex and p120ctn in SOPs increases free Par6-aPKC and Baz to promote the formation and polarization of the Baz-Par6-aPKC complex. Thus, this study links fate determination to asymmetric cell division and provides a general framework to understand how epithelial cells can divide asymmetrically despite having junctions.
5

Étude du rôle de la kinase Aurora-A dans le développement de la larve et du cerveau de Drosophila melanogaster / Study of the Aurora-A kinase role in the development of the larva and brain of Drosophila melanogaster

Vaufrey, Lucie 02 October 2017 (has links)
Aurora-A (AurA) est une sérine/thréonine kinase jouant un rôle majeur dans le cycle cellulaire. Elle est connue pour son rôle oncogène et les compagnies pharmaceutiques développent des inhibiteurs ciblant son activité kinase. Cependant, il a été montré chez différentes espèces qu’Aurora-A possède des rôles indépendants de son activité kinase et agit également comme suppresseur de tumeur quand son activité kinase est altérée. Ceci pose donc un problème dans le développement des inhibiteurs car cibler l’activité kinase d’Aurora-A pour traiter le cancer pourrait mener à l’effet inverse. Pour résoudre ce dilemme, j’ai étudié en détail les phénotypes de mutants AurA nul et hypomorphe chez Drosophila melanogaster. J’ai étudié à la fois les défauts de développement en me basant sur le temps de pupation des larves et le rôle de suppresseur de tumeur en me basant sur les neuroblastes du cerveau central. Dans ce modèle, une caractéristique des suppresseurs de tumeur est leur capacité à induire la formation de neuroblastes supplémentaires dans le cerveau central conduisant à une surcroissance du cerveau. Chez les mutants AurA, la taille du cerveau est plus petite jusqu’à 96h de développement larvaire. Cependant, la pupation arrivant normalement entre 96h et 120h de développement larvaire est retardée chez le mutant et les larves ont une taille plus importante. Chez les mutants en retard de pupation le cerveau devient plus gros que ceux du contrôle. Le cerveau des mutants AurA a une importante augmentation du nombre de cellules positives pour Deadpan, un marqueur spécifique des neuroblastes et ce, avant que le cerveau des mutants AurA devienne plus grand que celui du contrôle. De plus, les disques imaginaux d’ailes et la glande annulaire sont clairement plus petits que ceux du contrôle à 96h de développement larvaire et les larves mutantes atteignent les stades L2 et L3 plus tôt. En conclusion, les mutants AurA montrent 1) une avance dans leur développement précoce certainement reliée au défaut de croissance de la glande annulaire ; 2) un retard de pupation ressemblant à celui observé en cas de défauts dans la voie de l’ecdysone, certainement dû à des défauts de croissance des disques imaginaux d’ailes ; 3) une surcroissance du cerveau à mettre en lien à la fois avec une augmentation du nombre de pseudo-neuroblastes et avec le retard de pupation. / Aurora-A (AurA) is a major kinase playing various roles in cell cycle. It’s a well-known oncogene and companies are developing drugs inhibiting its kinase activity. However, it has been shown in different species that AurA can have a kinase independent role or act as a tumor suppressor when its kinase activity is altered. This represents a problem for drugs development as inhibiting AurA kinase activity only could lead to life threatening phenotypes. To address this dilemma, we carefully deciphered phenotypes of AurA null and AurA hypomorph mutants in Drosophila melanogaster using the pupation as readout for development timing and larval central brain neuroblasts as model for tumorigenic study. One readout to define a tumor suppressor in this model is a brain overgrowth phenotype associated to central brain neuroblasts over-proliferation. In AurA mutants, brain size appears slightly smaller until 96h of larval development. However, pupation occurring normally between 96 and 120h of larval development is delayed in AurA mutants and larvae have an increased size. In this “delayed” mutant larvae, brains are eventually bigger than wild-type controls. Furthermore, AurA mutant central brains show a huge increased number of cells positive for deadpan, a marker of neuroblast identity, even before the appearance of brain over-growth phenotype. Additionally, wing discs and ring glands are clearly smaller in AurA mutants at 96h compared to control and mutant larvae reach L2 and L3 developmental stage earlier than control. In conclusion, AurA mutants have: 1) a precocious developmental advance certainly related to ring gland growth defect; 2) a pupation delay which resembles Ecdysone pathway timing defects certainly due to wing discs growth defect; 3) an enlarged brains phenotype due to an increased of the number of neuroblast-like cells and the pupation delay.
6

Régulation de la division asymétrique chez C. elegans

Rabilotta, Alexia 07 1900 (has links)
No description available.

Page generated in 0.0794 seconds