• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse numérique des spectres de fluorescence 3D issus de mélanges non linéaires

Luciani, Xavier 14 December 2007 (has links) (PDF)
Un mélange de composants fluorescents est caractérisé par sa Matrice d' Excitation- Emission de Fluorescence (MEEF). Il est souvent utile de déterminer les caractéristiques spectrales et les concentrations relatives de chaque constituant du mélange à partir de ce type de données Dans un premier temps, nous décrirons le phénomène de fluorescence et les techniques de mesure relatives. Nous insisterons alors sur le modèle trilinéaire de fluorescence.Nous ferons ensuite le point sur les méthodes d'analyses multilinéaires utilisées dans le cas de mélanges ou de composés organiques, en particulier l'algorithme de décomposition trilinéaire. PARAFAC. L'application de ces méthodes est restreinte aux solutions peu concentrées. Dans le cas contraire le chevauchement des différents spectres crée des effets d'écran qui ne sont alors pas pris en compte. Nous illustrerons sur des données réelles, les limites intrinsèques de PARAFAC pour l'analyse de telles solutions.La technique usuelle de correction de l'effet d'écran est basée sur un vieux modèle, que nous redémontrerons, et nécessite la mesure de l'absorbance des solutions. Ceci est source d'erreurs, et parfois impossible. Une des principales avancées de cette thèse concernera donc la mise en oeuvre d'un protocole de correction simple des effets d'écrans, ne nécessitant pas la mesure de l'absorbance. Nous proposerons également d'autres approches purement numériques. Notre propos sera illustré sur des mélanges réalisés en laboratoire, et des échantillons de matière organique très concentrés. Enfin, nous donnerons deux exemples d'application des différentes techniques exposées au suivi de la matière organique .
2

Potentiels des données de télédétection multisources pour la cartographie géologique : Application à la région de Rehoboth (Namibie)

gomez, cecile 26 November 2004 (has links) (PDF)
Les données de télédétection dans le domaine du Visible, de l'Infrarouge et du rayonnement Gamma ont un potentiel pour la cartographie géologique. Ce potentiel est évalué sur l'exemple de la carte géologique de Rehoboth, zone semi aride de Namibie en contexte sédimentaire. Une méthode de détermination des contours géologiques a été mise au point à partir d'une combinaison de données multispectrales ASTER (3 bandes dans le Visible, 6 bandes dans l'Infrarouge Moyen), de données hyperspectrales HYPERION (242 bandes du visible à l'Infrarouge Moyen) et de données de rayonnement Gamma (K, U, Th). Cette méthode permet de préciser la géométrie de la carte. Le potentiel des données HYPERION a ensuite été évalué pour l'identification et la quantification des lithologies à partir de deux techniques : la méthode N-FindR et la méthode d'Analyse en Composantes Indépendantes (ACI). Les tests montrent que la méthode ACI permet d'identifier de façon plus fiable les composants lithologiques présents dans un pixel.
3

Séparation de Sources Dans des Mélanges non-Lineaires / Blind Source Separation in Nonlinear Mixtures

Ehsandoust, Bahram 30 April 2018 (has links)
La séparation aveugle de sources aveugle (BSS) est une technique d’estimation des différents signaux observés au travers de leurs mélanges à l’aide de plusieurs capteurs, lorsque le mélange et les signaux sont inconnus. Bien qu’il ait été démontré mathématiquement que pour des mélanges linéaires, sous des conditions faibles, des sources mutuellement indépendantes peuvent être estimées, il n’existe dans de résultats théoriques généraux dans le cas de mélanges non-linéaires. La littérature sur ce sujet est limitée à des résultats concernant des mélanges non linéaires spécifiques.Dans la présente étude, le problème est abordé en utilisant une nouvelle approche utilisant l’information temporelle des signaux. L’idée originale conduisant à ce résultat, est d’étudier le problème de mélanges linéaires, mais variant dans le temps, déduit du problème non linéaire initial par dérivation. Il est démontré que les contre-exemples déjà présentés, démontrant l’inefficacité de l’analyse par composants indépendants (ACI) pour les mélanges non-linéaires, perdent leur validité, considérant l’indépendance au sens des processus stochastiques, au lieu de l’indépendance au sens des variables aléatoires. Sur la base de cette approche, de bons résultats théoriques et des développements algorithmiques sont fournis. Bien que ces réalisations ne soient pas considérées comme une preuve mathématique de la séparabilité des mélanges non-linéaires, il est démontré que, compte tenu de quelques hypothèses satisfaites dans la plupart des applications pratiques, elles sont séparables.De plus, les BSS non-linéaires pour deux ensembles utiles de signaux sources sont également traités, lorsque les sources sont (1) spatialement parcimonieuses, ou (2) des processus Gaussiens. Des méthodes BSS particulières sont proposées pour ces deux cas, dont chacun a été largement étudié dans la littérature qui correspond à des propriétés réalistes pour de nombreuses applications pratiques.Dans le cas de processus Gaussiens, il est démontré que toutes les applications non-linéaires ne peuvent pas préserver la gaussianité de l’entrée, cependant, si on restreint l’étude aux fonctions polynomiales, la seule fonction préservant le caractère gaussiens des processus (signaux) est la fonction linéaire. Cette idée est utilisée pour proposer un algorithme de linéarisation qui, en cascade par une méthode BSS linéaire classique, sépare les mélanges polynomiaux de processus Gaussiens.En ce qui concerne les sources parcimonieuses, on montre qu’elles constituent des variétés distinctes dans l’espaces des observations et peuvent être séparées une fois que les variétés sont apprises. À cette fin, plusieurs problèmes d’apprentissage multiple ont été généralement étudiés, dont les résultats ne se limitent pas au cadre proposé du SRS et peuvent être utilisés dans d’autres domaines nécessitant un problème similaire. / Blind Source Separation (BSS) is a technique for estimating individual source components from their mixtures at multiple sensors, where the mixing model is unknown. Although it has been mathematically shown that for linear mixtures, under mild conditions, mutually independent sources can be reconstructed up to accepted ambiguities, there is not such theoretical basis for general nonlinear models. This is why there are relatively few results in the literature in this regard in the recent decades, which are focused on specific structured nonlinearities.In the present study, the problem is tackled using a novel approach utilizing temporal information of the signals. The original idea followed in this purpose is to study a linear time-varying source separation problem deduced from the initial nonlinear problem by derivations. It is shown that already-proposed counter-examples showing inefficiency of Independent Component Analysis (ICA) for nonlinear mixtures, loose their validity, considering independence in the sense of stochastic processes instead of simple random variables. Based on this approach, both nice theoretical results and algorithmic developments are provided. Even though these achievements are not claimed to be a mathematical proof for the separability of nonlinear mixtures, it is shown that given a few assumptions, which are satisfied in most practical applications, they are separable.Moreover, nonlinear BSS for two useful sets of source signals is also addressed: (1) spatially sparse sources and (2) Gaussian processes. Distinct BSS methods are proposed for these two cases, each of which has been widely studied in the literature and has been shown to be quite beneficial in modeling many practical applications.Concerning Gaussian processes, it is demonstrated that not all nonlinear mappings can preserve Gaussianity of the input. For example being restricted to polynomial functions, the only Gaussianity-preserving function is linear. This idea is utilized for proposing a linearizing algorithm which, cascaded by a conventional linear BSS method, separates polynomial mixturesof Gaussian processes.Concerning spatially sparse sources, it is shown that spatially sparsesources make manifolds in the observations space, and can be separated once the manifolds are clustered and learned. For this purpose, multiple manifold learning problem has been generally studied, whose results are not limited to the proposed BSS framework and can be employed in other topics requiring a similar issue.

Page generated in 0.0729 seconds