• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles non linéaires de transport dans un milieu poreux hétérogène

Jimenez, Julien 28 November 2007 (has links) (PDF)
Cette thèse a pour objet l'analyse mathématique de lois de conservation scalaires dont la fonction flux présente une discontinuité par rapport à la variable d'espace. Nous nous intéressons plus particulèrement au problème du raccord le long d'une interface commune des solutions de deux équations quasi linéaires hyperboliques du premier ordre, posées dans deux ouverts disjoints. <br /> En premier lieu nous considérons un problème couplé hyperbolique/hyperbolique. Sous une condition de non dégénérescence du flux, nous avons obtenu un résultat d'existence et d'unicité d'une solution faible entropique d'abord en dimension 1 d'espace puis en dimension quelconque. La preuve de l'unicité est basée sur la méthode de dédoublement des variables due à S.N. Kruzkov puis sur un raisonnement presque partout à l'interface. Dans le cas particulier de la dimension 1 l'existence s'obtient par une régularisation adéquate du coefficient discontinu dans le terme de convection alors que nous utilisons la méthode de viscosité artificielle dans le cas général. <br />En second lieu nous traitons le cas de termes de convection qui apparaissent dans l'ingénierie pétrolière pour lesquels la condition de non dégénérescence de la non linéarité n'est pas vérifiée. Nous ne pouvons donc pas adapter les méthodes précédemment utilisées. Nous nous sommes donc intéressés à un problème couplé perturbé où sur l'un des deux ouverts un terme de diffusion est ajouté. Sous l'hypothèse que les caractéristiques provenant de la zone hyperbolique sont sortantes à l'interface, l'unicité d'une solution faible entropique est établie. La méthode de viscosité artificielle et la notion de processus entropique nous permettent de prouver le résultat d'existence .

Page generated in 0.1003 seconds