• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception d'un solveur linéaire creux parallèle hybride direct-itératif

Gaidamour, Jérémie 08 December 2009 (has links) (PDF)
Cette thèse présente une méthode de résolution parallèle de systèmes linéaires creux qui combine efficacement les techniques de résolutions directes et itératives en utilisant une approche de type complément de Schur. Nous construisons une décomposition de domaine. L'intérieur des sous-domaines est éliminé de manière directe pour se ramener à un problème sur l'interface. Ce problème est résolu grâce à une méthode itérative préconditionnée par une factorisation incomplète. Un réordonnancement de l'interface permet la construction d'un préconditionneur global du complément de Schur. Des algorithmes minimisant le pic mémoire de la construction du préconditionneur sont proposés. Nous exploitons un schéma d'équilibrage de charge utilisant une répartition de multiples sous-domaines sur les processeurs. Les méthodes sont implémentées dans le solveur HIPS et des résultats expérimentaux parallèles sont présentés sur de grands cas tests industriels.
2

Conception d’un solveur linéaire creux parallèle hybride direct-itératif

Gaidamour, Jérémie 08 December 2009 (has links)
Cette thèse présente une méthode de résolution parallèle de systèmes linéaires creux qui combine efficacement les techniques de résolutions directes et itératives en utilisant une approche de type complément de Schur. Nous construisons une décomposition de domaine. L'intérieur des sous-domaines est éliminé de manière directe pour se ramener à un problème sur l'interface. Ce problème est résolu grâce à une méthode itérative préconditionnée par une factorisation incomplète. Un réordonnancement de l'interface permet la construction d'un préconditionneur global du complément de Schur. Des algorithmes minimisant le pic mémoire de la construction du préconditionneur sont proposés. Nous exploitons un schéma d'équilibrage de charge utilisant une répartition de multiples sous-domaines sur les processeurs. Les méthodes sont implémentées dans le solveur HIPS et des résultats expérimentaux parallèles sont présentés sur de grands cas tests industriels. / This thesis presents a parallel resolution method for sparse linear systems which combines effectively techniques of direct and iterative solvers using a Schur complement approach. A domain decomposition is built ; the interiors of the subdomains are eliminated by a direct method in order to use an iterative method only on the interface unknowns. The system on the interface (Schur complement) is solved thanks to an iterative method preconditioned by a global incomplete factorization. A special ordering on the Schur complement allows to build a scalable preconditioner. Algorithms minimizing the memory peak that appears during the construction of the preconditioner are presented. The memory is balanced thanks to a multiple domains per processors parallelization scheme. The methods are implemented in the HIPS solver and parallel experimental results are presented on large industrial test cases.
3

Optimisations des solveurs linéaires creux hybrides basés sur une approche par complément de Schur et décomposition de domaine / Optimizations of hybrid sparse linear solvers relying on Schur complement and domain decomposition approaches

Casadei, Astrid 19 October 2015 (has links)
Dans cette thèse, nous nous intéressons à la résolution parallèle de grands systèmes linéaires creux. Nous nous focalisons plus particulièrement sur les solveurs linéaires creux hybrides directs itératifs tels que HIPS, MaPHyS, PDSLIN ou ShyLU, qui sont basés sur une décomposition de domaine et une approche « complément de Schur ». Bien que ces solveurs soient moins coûteux en temps et en mémoire que leurs homologues directs, ils ne sont néanmoins pas exempts de surcoûts. Dans une première partie, nous présentons les différentes méthodes de réduction de la consommation mémoire déjà existantes et en proposons une nouvelle qui n’impacte pas la robustesse numérique du précondionneur construit. Cette technique se base sur une atténuation du pic mémoire par un ordonnancement spécifique des tâches de calcul, d’allocation et de désallocation des blocs, notamment ceux se trouvant dans les parties « couplage » des domaines.Dans une seconde partie, nous nous intéressons à la question de l’équilibrage de la charge que pose la décomposition de domaine pour le calcul parallèle. Ce problème revient à partitionner le graphe d’adjacence de la matrice en autant de parties que de domaines désirés. Nous mettons en évidence le fait que pour avoir un équilibrage correct des temps de calcul lors des phases les plus coûteuses d’un solveur hybride tel que MaPHyS, il faut à la fois équilibrer les domaines en termes de nombre de noeuds et de taille d’interface locale. Jusqu’à aujourd’hui, les partitionneurs de graphes tels que Scotch et MeTiS ne s’intéressaient toutefois qu’au premier critère (la taille des domaines) dans le contexte de la renumérotation des matrices creuses. Nous proposons plusieurs variantes des algorithmes existants afin de prendre également en compte l’équilibrage des interfaces locales. Toutes nos modifications sont implémentées dans le partitionneur Scotch, et nous présentons des résultats sur de grands cas de tests industriels. / In this thesis, we focus on the parallel solving of large sparse linear systems. Our main interestis on direct-iterative hybrid solvers such as HIPS, MaPHyS, PDSLIN or ShyLU, whichrely on domain decomposition and Schur complement approaches. Althrough these solvers arenot as time and space consuming as direct methods, they still suffer from serious overheads. Ina first part, we thus present the existing techniques for reducing the memory consumption, andwe present a new method which does not impact the numerical robustness of the preconditioner.This technique reduces the memory peak by doing a special scheduling of computation, allocation,and freeing tasks in particular in the Schur coupling blocks of the matrix. In a second part,we focus on the load balancing of the domain decomposition in a parallel context. This problemconsists in partitioning the adjacency graph of the matrix in as many domains as desired. Wepoint out that a good load balancing for the most expensive steps of an hybrid solver such asMaPHyS relies on the balancing of both interior nodes and interface nodes of the domains.Through, until now, graph partitioners such as MeTiS or Scotch used to optimize only thefirst criteria (i.e., the balancing of interior nodes) in the context of sparse matrix ordering. Wepropose different variations of the existing algorithms to improve the balancing of interface nodesand interior nodes simultaneously. All our changes are implemented in the Scotch partitioner.We present our results on large collection of matrices coming from real industrial cases.

Page generated in 0.1122 seconds