• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semi-parametric bayesian model, applications in dose finding studies / Modèle bayésien semi-paramétrique, applications en positionnement de dose

Clertant, Matthieu 22 June 2016 (has links)
Les Phases I sont un domaine des essais cliniques dans lequel les statisticiens ont encore beaucoup à apporter. Depuis trente ans, ce secteur bénéficie d'un intérêt croissant et de nombreuses méthodes ont été proposées pour gérer l'allocation séquentielle des doses aux patients intégrés à l'étude. Durant cette Phase, il s'agit d'évaluer la toxicité, et s'adressant à des patients gravement atteints, il s'agit de maximiser les effets curatifs du traitement dont les retours toxiques sont une conséquence. Parmi une gamme de doses, on cherche à déterminer celle dont la probabilité de toxicité est la plus proche d'un seuil souhaité et fixé par les praticiens cliniques. Cette dose est appelée la MTD (maximum tolerated dose). La situation canonique dans laquelle sont introduites la plupart des méthodes consiste en une gamme de doses finie et ordonnée par probabilité de toxicité croissante. Dans cette thèse, on introduit une modélisation très générale du problème, la SPM (semi-parametric methods), qui recouvre une large classe de méthodes. Cela permet d'aborder des questions transversales aux Phases I. Quels sont les différents comportements asymptotiques souhaitables? La MTD peut-elle être localisée? Comment et dans quelles circonstances? Différentes paramétrisations de la SPM sont proposées et testées par simulations. Les performances obtenues sont comparables, voir supérieures à celles des méthodes les plus éprouvées. Les résultats théoriques sont étendus au cas spécifique de l'ordre partiel. La modélisation de la SPM repose sur un traitement hiérarchique inférentiel de modèles satisfaisant des contraintes linéaires de paramètres inconnus. Les aspects théoriques de cette structure sont décrits dans le cas de lois à supports discrets. Dans cette circonstance, de vastes ensembles de lois peuvent aisément être considérés, cela permettant d'éviter les cas de mauvaises spécifications. / Phase I clinical trials is an area in which statisticians have much to contribute. For over 30 years, this field has benefited from increasing interest on the part of statisticians and clinicians alike and several methods have been proposed to manage the sequential inclusion of patients to a study. The main purpose is to evaluate the occurrence of dose limiting toxicities for a selected group of patients with, typically, life threatening disease. The goal is to maximize the potential for therapeutic success in a situation where toxic side effects are inevitable and increase with increasing dose. From a range of given doses, we aim to determine the dose with a rate of toxicity as close as possible to some threshold chosen by the investigators. This dose is called the MTD (maximum tolerated dose). The standard situation is where we have a finite range of doses ordered with respect to the probability of toxicity at each dose. In this thesis we introduce a very general approach to modeling the problem - SPM (semi-parametric methods) - and these include a large class of methods. The viewpoint of SPM allows us to see things in, arguably, more relevant terms and to provide answers to questions such as asymptotic behavior. What kind of behavior should we be aiming for? For instance, can we consistently estimate the MTD? How, and under which conditions? Different parametrizations of SPM are considered and studied theoretically and via simulations. The obtained performances are comparable, and often better, to those of currently established methods. We extend the findings to the case of partial ordering in which more than one drug is under study and we do not necessarily know how all drug pairs are ordered. The SPM model structure leans on a hierarchical set-up whereby certain parameters are linearly constrained. The theoretical aspects of this structure are outlined for the case of distributions with discrete support. In this setting the great majority of laws can be easily considered and this enables us to avoid over restrictive specifications than can results in poor behavior.
2

Les méthodes numériques de transport réactif

Sabit, Souhila 27 May 2014 (has links) (PDF)
La modélisation du transport réactif du contaminant en milieu poreux est un problème complexe cumulant les difficultés de la modélisation du transport avec celles de la modélisation de la chimie et surtout du couplage entre les deux. Cette modélisation conduit à un système d'équations aux dérivées partielles et algébriques dont les inconnues sont les quantités d'espèces chimiques. Une approche possible, déjà utilisée par ailleurs, est de choisir la méthode globale DAE : l'utilisation d'une méthode de lignes, correspondant à la discrétisation en espace seulement, conduit à un système différentiel algébrique (DAE) qui doit être résolu par un solveur adapté. Dans notre cas, on utilise le solveur IDA de Sundials qui s'appuie sur une méthode implicite, à ordre et pas variables, et qui requiert à chaque pas de temps la résolution d'un grand système non linéaire associé à une matrice jacobienne. Cette méthode est implémentée dans un logiciel qui s'appelle GRT3D (Transport Réactif Global en 3D). Le présent travail présente une amélioration de la méthode GDAE, du point de vue de la performance, de la stabilité et de la robustesse. Nous avons ainsi enrichi les possibilités de GRT3D, par la prise en compte complète des équations de précipitation-dissolution permettant l'apparition ou la disparition d'une espèce précipitée. En complément de l'étude de la méthode GDAE, nous présentons aussi une méthode séquentielle non itérative (SNIA), qui est une méthode basée sur le schéma d'Euler explicite : à chaque pas de temps, on résout explicitement l'équation de transport et on utilise ces calculs comme données pour le système chimique, résolu dans chaque maille de façon indépendante. Nous présentons aussi une comparaison entre cette méthode et l'approche GDAE. Des résultats numériques pour deux cas tests, celui proposé par l'ANDRA (cas-test 2D) d'une part, celui proposé par le groupe MoMas (Benchmark "easy case") d'autre part, sont enfin présentés, commentés et analysés.
3

Les méthodes numériques de transport réactif / Numerical methods for reactive transport

Sabit, Souhila 27 May 2014 (has links)
La modélisation du transport réactif du contaminant en milieu poreux est un problème complexe cumulant les difficultés de la modélisation du transport avec celles de la modélisation de la chimie et surtout du couplage entre les deux. Cette modélisation conduit à un système d'équations aux dérivées partielles et algébriques dont les inconnues sont les quantités d'espèces chimiques. Une approche possible, déjà utilisée par ailleurs, est de choisir la méthode globale DAE : l'utilisation d'une méthode de lignes, correspondant à la discrétisation en espace seulement, conduit à un système différentiel algébrique (DAE) qui doit être résolu par un solveur adapté. Dans notre cas, on utilise le solveur IDA de Sundials qui s'appuie sur une méthode implicite, à ordre et pas variables, et qui requiert à chaque pas de temps la résolution d'un grand système non linéaire associé à une matrice jacobienne. Cette méthode est implémentée dans un logiciel qui s'appelle GRT3D (Transport Réactif Global en 3D). Le présent travail présente une amélioration de la méthode GDAE, du point de vue de la performance, de la stabilité et de la robustesse. Nous avons ainsi enrichi les possibilités de GRT3D, par la prise en compte complète des équations de précipitation-dissolution permettant l'apparition ou la disparition d'une espèce précipitée. En complément de l'étude de la méthode GDAE, nous présentons aussi une méthode séquentielle non itérative (SNIA), qui est une méthode basée sur le schéma d'Euler explicite : à chaque pas de temps, on résout explicitement l'équation de transport et on utilise ces calculs comme données pour le système chimique, résolu dans chaque maille de façon indépendante. Nous présentons aussi une comparaison entre cette méthode et l'approche GDAE. Des résultats numériques pour deux cas tests, celui proposé par l'ANDRA (cas-test 2D) d'une part, celui proposé par le groupe MoMas (Benchmark "easy case") d'autre part, sont enfin présentés, commentés et analysés. / Modeling reactive transport of contaminants in porous media is a complex problem combining the difficulties of modeling the trasport with those of modeling the chemistry and especially the coupling between the two .This model leads to a system of partial differential equations and algebraic equations whose unknowns are the quantities of chemical species. One approach , already used elsewhere , is choosing the global DAE method : using the method of lines, discretization in space only, leads to a differential algebraic system (DAE ) to be solved by a suitable solver . In our case , the solver IDA Sundials relies on an implicit method, order is used but not variables, and requires at each time solving a large nonlinear system associated with a Jacobian matrix . This method is implemented in a software called GRT3D (Global Reactive Transport in 3D). This paper presents an improved GDAE method , from the standpoint of performance, the stability and robustness. We have enriched the possibilities of GRT3D , by taking full account of the equations of dissolution – precipitation for the appearance or disappearance of precipitated species. In addition to the study of the GDAE method, we also present a non-iterative sequential method ( SNIA ) which is a method based on the explicit Euler scheme : at each time step, we explicitly solve the transport equation and we use these calculations as data for the chemical system which is resolved in each cell independently. We also present a comparison between this method and GDAE approach . Numerical results for two test cases , one proposed by ANDRA ( 2D test case ) on one hand and one proposed by the group MOMAS ( Benchmark "easy case" ) on the other hand, are finally presented , discussed and analyzed.

Page generated in 0.1014 seconds