1 |
Des souris knock-out pour le récepteur métabotrope au glutamate mGluR7 révèlent son rôle dans la cognition et les émotions / Knockout mice for the metabotropic glutamate receptor mGluR7 reveal its role in cognition and emotionsSansig, Gilles 31 May 2016 (has links)
L’un des domaines clés de la recherche en neurosciences modernes consiste à comprendre les interactions complexes entre le stress et la génétique qui conduisent à la manifestation de troubles tels que la dépression, l’anxiété et le dysfonctionnement cognitif. Des preuves de plus en plus nombreuses suggèrent que le système glutamatergique peut être une cible thérapeutique pertinente pour de tels troubles. Le glutamate est le neurotransmetteur utilisé par la grande majorité des synapses excitatrices dans le cerveau. Et les sous-types des récepteurs métabotropique au glutamate (mGluR1 – mGluR8) agissent avant tout comme d’importants régulateurs postsynaptiques de la neurotransmission dans le système nerveux central (SNC), en fournissant un mécanisme par lequel les réponses synaptiques rapides à travers des canaux cationiques dépendants du glutamate peuvent être affinées. Ainsi, les récepteurs mGluR participent à une grande variété de fonctions du système nerveux central. Au sein dela famille des récepteurs métabotropiques au glutamate, le récepteur présynaptique mGluR7 montre la conservation évolutive la plus élevée et on pense qu'il agit comme un régulateur de la libération de neurotransmetteurs. Le récepteur mGluR7 est également le plus largement distribué des récepteurs présynaptiques mGluR, présent sur une large gamme de synapses démontrées comme critiques à la fois dans le fonctionnement normal du système nerveux central, mais également dans une large gamme de troubles psychiatriques et neurologiques. De plus, un nombre croissant de preuves expérimentales suggèrent que le récepteur mGluR7 est non seulement un acteur clé dans l’élaboration de réponses synaptiques au niveau des synapses glutamatergiques, mais qu’il est également un régulateur clé de la transmission GABAergique inhibitrice. Le développement d’outils pharmacologiques et génétiques sélectifs a permis le démantèlement de la fonction du récepteur mGluR7 dans une multitude de processus physiologiques et comportementaux. Ainsi les souris knock-out ont mis en évidence un rôle du récepteur mGluR7 dans l’anxiété, le conditionnement de la peur, l’aversion, l’apprentissage et la mémoire spatiale. De plus, ces souris dépourvues du récepteur métabrotrope mGluR7 démontrent une sensibilité accrue aux crises épileptiques suggérant un rôle unique de ce récepteur dans la régulation de l’excitabilité neuronale. De même, une altération de la plasticité synaptique à court terme dans les souris transgéniques dépourvues du récepteur métabotrope au glutamate mGluR7 démontre que l’absence de récepteurs mGluR7 engendre des altérations de la plasticité synaptique à court terme dans l’hippocampe. En outre, la découverte et la caractérisation récente du premier antagoniste allostérique agissant sur le domaine VFTD de l’extrémité N-terminale du récepteur mGluR7 potentialise définitivement les observations effectuées sur les souris mGluR7 knock-out quant à la fonction de ce récepteur dans l’anxiété et la dépression. Ensemble, ces données suggèrent que le récepteur mGluR7 est un important régulateur de la fonction glutamatergique, de la peur, de l’aversion et de la cognition et donc ce récepteur représente une cible thérapeutique innovante pour les troubles liés au stress à l’interface de la cognition et de l’anxiété. / Metabotropic glutamate receptors (mGluRs) consist of eight different subtypes and exert their effects on second messengers and ion channels via G-proteins. The function of individual mGluR subtypes in the CNS, however, largely remains to be clarified. To study the role of mGluR7 receptors, we used homologous recombination to generate mice lacking this metabotropic receptor subtype (mGluR7). Immunohistochemical and immunoelectron-microscopic analyses showed that mGluR7 is highly expressed in amygdala and preferentially localized at the presynaptic axon terminals of glutamatergic neurons, suggesting strongly that mGluR7 is involved in neural processes subserving amygdala-dependent averse responses. To examine amygdala-dependent behavior, we examined first the fear response of freezing after electric shock in wild-type and mGluR7 (mGluR7-/-) knockout littermates. Wild-type mice displayed freezing immediately after footshock. In comparison, mGluR7 knockout mice showed significantly reduced levels in both immediate postshock and delayed freezing responses. However, the knockout mice exhibited no abnormalities in pain sensitivity and locomotor activity. Secondly, we performed conditioned taste aversion (CTA) experiments. In wild-type mice, the administration of saccharin followed by intraperitoneal injection of the malaise-inducing agent LiCl resulted in an association between saccharin and LiCl. This association caused strong CTA toward saccharin. In contrast, mGluR7 knockout mice failed to associate between the taste and the negative reinforcer in CTA experiments. Again, the knockout mice showed no abnormalities in taste preference and in the sensitivity to LiCl toxicity. These results indicated that mGluR7 deficiency causes an impairment of two distinct amygdala-dependent behavioral paradigms. Because the amygdale function is essential for these two distinct behavioral paradigms, our results suggest that mGluR7 is critical in amygdale function. The amygdale is a brain region that is known to be critical for the manifestation of anxiolysis and antidepressant action and glutamatergic neurotransmission has been strongly implicated in the pathophysiology of affective disorders. To this end we analyzed the behavioral profiles of mGluR7-/- mice in animal models of depression and anxiety. mGluR7-/- mice were compared to wildtype littermates and showed substantially less behavioural immobility in both the forced swim test and the tail suspension test. Both behavioural paradigms are widely used to predict antidepressant-like activity. Further, mGluR7-/- mice displayed anxiolytic activity in four different behavioural tests namely the light-dark box, the elevated plus maze, the staircase test, and the stress-induced hyperthermia test, while their cognitive performance was normal in the passive avoidance paradigm. [...]
|
2 |
Functional Aspects of Peripheral and Spinal Cord Neurons Involved in Itch and PainAresh, Bejan January 2016 (has links)
We have investigated the role of the metabotropic glutamate receptor 7 (mGluR7) and the gastrin releasing peptide receptor (Grpr) population that are involved at different levels of itch transmission. We found that mGuR7 deficient mice displayed an anaphylaxis-like behavior when provoked with histamine. Analysis of blood revealed elevated plasma levels of histamine and mouse mast cell protease-1 (mMCP1), two indicators of anaphylaxis, in mGluR7 deficient mice compared with control mice. Inhibition of the neurokinin 1 receptor, by preventing binding of the corresponding ligand substance P (SP), prior to provocation with histamine prevented the development of anaphylaxis in mGluR7 deficient animals. However, blocking GRPR (gastrin releasing peptide receptor) only resulted in decreased itch levels in mGluR7 deficient mice but did not prevent the systemic anaphylaxis-like behavior. Our findings indicate that mGluR7 normally functions as a brake on histaminergic itch that is mediated through GRPR as well as anaphylaxis through Substance P. Grpr has previously been shown to mediate both histaminergic and non-histaminergic itch but little is known about the GRPR neuronal population. We used a BAC cloning strategy to construct a Grpr-Cre line, which we crossed with the reporter lines tdTomato and Viaat-egfp as well as with Vglut2-lox. We could conclude that Grpr-Cre neurons are mainly excitatory interneurons located in lamina II-IV, that convey itch using VGLUT2-mediated glutamatergic transmission to the next, currently unknown, step in the labeled line of chemical itch. To eventually deduce the function of the endogenous opioids dynorphin and enkephalin, which are hypothesized to be involved in gating pain and itch in the spinal cord, we constructed two Cre lines using BAC cloning that targeted the precursor proteins preprodynorphin and preproenkephalin, respectively. Preprodynorphin-Cre neurons were mainly located in lamina II-IV and overlapped to 47% with Vglut2 mRNA, while the co-expression with the inhibitory markers Viaat-egfp and PAX2 was 13% and 28% respectively in the spinal cord. Preproenkephalin neurons were more localized to lamina III in the dorsal horn, furthermore single cell analysis showed that they overlapped to 94% with Vglut2 mRNA while 7% and 13% expressed Viaat-egfp and PAX2 respectively.
|
Page generated in 0.0196 seconds