• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5628
  • 577
  • 282
  • 275
  • 167
  • 157
  • 83
  • 66
  • 50
  • 42
  • 24
  • 21
  • 20
  • 19
  • 12
  • Tagged with
  • 9094
  • 9094
  • 3034
  • 1698
  • 1538
  • 1530
  • 1425
  • 1369
  • 1202
  • 1188
  • 1167
  • 1131
  • 1117
  • 1029
  • 1028
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Prediction of Oestrus in Dairy Cows: An Application of Machine Learning to Skewed Data

Lynam, Adam David January 2009 (has links)
The Dairy industry requires accurate detection of oestrus(heat) in dairy cows to maximise output of the animals. Traditionally this is a process dependant on human observation and interpretation of the various signs of heat. Many areas of the dairy industry can be automated, however the detection of oestrus is an area that still requires human experts. This thesis investigates the application of Machine Learning classification techniques, on dairy cow milking data provided by the Livestock Improvement Corporation, to predict oestrus. The usefulness of various ensemble learning algorithms such as Bagging and Boosting are explored as well as specific skewed data techniques. An empirical study into the effectiveness of classifiers designed to target skewed data is included as a significant part of the investigation. Roughly Balanced Bagging and the novel Under Bagging classifiers are explored in considerable detail and found to perform quite favourably over the SMOTE technique for the datasets selected. This study uses non-dairy, commonplace, Machine Learning datasets; many of which are found in the UCI Machine Learning Repository.
342

Learning and discovery in incremental knowledge acquisition

Suryanto, Hendra, Computer Science & Engineering, Faculty of Engineering, UNSW January 2005 (has links)
Knowledge Based Systems (KBS) have been actively investigated since the early period of AI. There are four common methods of building expert systems: modeling approaches, programming approaches, case-based approaches and machine-learning approaches. One particular technique is Ripple Down Rules (RDR) which may be classified as an incremental case-based approach. Knowledge needs to be acquired from experts in the context of individual cases viewed by them. In the RDR framework, the expert adds a new rule based on the context of an individual case. This task is simple and only affects the expert???s workflow minimally. The rule added fixes an incorrect interpretation made by the KBS but with minimal impact on the KBS's previous correct performance. This provides incremental improvement. Despite these strengths of RDR, there are some limitations including rule redundancy, lack of intermediate features and lack of models. This thesis addresses these RDR limitations by applying automatic learning algorithms to reorganize the knowledge base, to learn intermediate features and possibly to discover domain models. The redundancy problem occurs because rules created in particular contexts which should have more general application. We address this limitation by reorganizing the knowledge base and removing redundant rules. Removal of redundant rules should also reduce the number of future knowledge acquisition sessions. Intermediate features improve modularity, because the expert can deal with features in groups rather than individually. In addition to the manual creation of intermediate features for RDR, we propose the automated discovery of intermediate features to speed up the knowledge acquisition process by generalizing existing rules. Finally, the Ripple Down Rules approach facilitates rapid knowledge acquisition as it can be initialized with a minimal ontology. Despite minimal modeling, we propose that a more developed knowledge model can be extracted from an existing RDR KBS. This may be useful in using RDR KBS for other applications. The most useful of these three developments was the automated discovery of intermediate features. This made a significant difference to the number of knowledge acquisition sessions required.
343

Convex hulls in concept induction

Newlands, Douglas A, mikewood@deakin.edu.au January 1998 (has links)
Classification learning is dominated by systems which induce large numbers of small axis-orthogonal decision surfaces. This strongly biases such systems towards particular hypothesis types but there is reason believe that many domains have underlying concepts which do not involve axis orthogonal surfaces. Further, the multiplicity of small decision regions mitigates against any holistic appreciation of the theories produced by these systems, notwithstanding the fact that many of the small regions are individually comprehensible. This thesis investigates modeling concepts as large geometric structures in n-dimensional space. Convex hulls are a superset of the set of axis orthogonal hyperrectangles into which axis orthogonal systems partition the instance space. In consequence, there is reason to believe that convex hulls might provide a more flexible and general learning bias than axis orthogonal regions. The formation of convex hulls around a group of points of the same class is shown to be a usable generalisation and is more general than generalisations produced by axis-orthogonal based classifiers, without constructive induction, like decision trees, decision lists and rules. The use of a small number of large hulls as a concept representation is shown to provide classification performance which can be better than that of classifiers which use a large number of small fragmentary regions for each concept. A convex hull based classifier, CH1, has been implemented and tested. CH1 can handle categorical and continuous data. Algorithms for two basic generalisation operations on hulls, inflation and facet deletion, are presented. The two operations are shown to improve the accuracy of the classifier and provide moderate classification accuracy over a representative selection of typical, largely or wholly continuous valued machine learning tasks. The classifier exhibits superior performance to well-known axis-orthogonal-based classifiers when presented with domains where the underlying decision surfaces are not axis parallel. The strengths and weaknesses of the system are identified. One particular advantage is the ability of the system to model domains with approximately the same number of structures as there are underlying concepts. This leads to the possibility of extraction of higher level mathematical descriptions of the induced concepts, using the techniques of computational geometry, which is not possible from a multiplicity of small regions.
344

Improving protein interactions prediction using machine learning and visual analytics

Singhal, Mudita, January 2007 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, December 2007. / Includes bibliographical references (p. 98-107).
345

Hierarchical average reward reinforcement learning

Seri, Sandeep 15 March 2002 (has links)
Reinforcement Learning (RL) is the study of agents that learn optimal behavior by interacting with and receiving rewards and punishments from an unknown environment. RL agents typically do this by learning value functions that assign a value to each state (situation) or to each state-action pair. Recently, there has been a growing interest in using hierarchical methods to cope with the complexity that arises due to the huge number of states found in most interesting real-world problems. Hierarchical methods seek to reduce this complexity by the use of temporal and state abstraction. Like most RL methods, most hierarchical RL methods optimize the discounted total reward that the agent receives. However, in many domains, the proper criteria to optimize is the average reward per time step. In this thesis, we adapt the concepts of hierarchical and recursive optimality, which are used to describe the kind of optimality achieved by hierarchical methods, to the average reward setting and show that they coincide under a condition called Result Distribution Invariance. We present two new model-based hierarchical RL methods, HH-learning and HAH-learning, that are intended to optimize the average reward. HH-learning is a hierarchical extension of the model-based, average-reward RL method, H-learning. Like H-learning, HH-learning requires exploration in order to learn correct domain models and optimal value function. HH-learning can be used with any exploration strategy whereas HAH-learning uses the principle of "optimism under uncertainty", which gives it a built-in "auto-exploratory" feature. We also give the hierarchical and auto-exploratory hierarchical versions of R-learning, a model-free average reward method, and a hierarchical version of ARTDP, a model-based discounted total reward method. We compare the performance of the "flat" and hierarchical methods in the task of scheduling an Automated Guided Vehicle (AGV) in a variety of settings. The results show that hierarchical methods can take advantage of temporal and state abstraction and converge in fewer steps than the flat methods. The exception is the hierarchical version of ARTDP. We give an explanation for this anomaly. Auto-exploratory hierarchical methods are faster than the hierarchical methods with ��-greedy exploration. Finally, hierarchical model-based methods are faster than hierarchical model-free methods. / Graduation date: 2003
346

Machine Learning for Automated Theorem Proving

Kakkad, Aman 01 January 2009 (has links)
Developing logic in machines has always been an area of concern for scientists. Automated Theorem Proving is a field that has implemented the concept of logical consequence to a certain level. However, if the number of available axioms is very large then the probability of getting a proof for a conjecture in a reasonable time limit can be very small. This is where the ability to learn from previously proved theorems comes into play. If we see in our own lives, whenever a new situation S(NEW) is encountered we try to recollect all old scenarios S(OLD) in our neural system similar to the new one. Based on them we then try to find a solution for S(NEW) with the help of all related facts F(OLD) to S(OLD). Similar is the concept in this research. The thesis deals with developing a solution and finally implementing it in a tool that tries to prove a failed conjecture (a problem that the ATP system failed to prove) by extracting a sufficient set of axioms (we call it Refined Axiom Set (RAS)) from a large pool of available axioms. The process is carried out by measuring the similarity of a failed conjecture with solved theorems (already proved) of the same domain. We call it "process1", which is based on syntactic selection of axioms. After process1, RAS may still have irrelevant axioms, which motivated us to apply semantic selection approach on RAS so as to refine it to a much finer level. We call this approach as "process2". We then try to prove failed conjecture either from the output of process1 or process2, depending upon whichever approach is selected by the user. As for our testing result domain, we picked all FOF problems from the TPTP problem domain called SWC, which consisted of 24 broken conjectures (problems for which the ATP system is able to show that proof exists but not able to find it because of limited resources), 124 failed conjectures and 274 solved theorems. The results are produced by keeping in account both the broken and failed problems. The percentage of broken conjectures being solved with respect to the failed conjectures is obviously higher and the tool has shown a success of 100 % on the broken set and 19.5 % on the failed ones.
347

Temporal data mining in a dynamic feature space /

Wenerstrom, Brent, January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Computer Science, 2006. / Includes bibliographical references (p. 43-45).
348

Learnable similarity functions and their application to record linkage and clustering

Bilenko, Mikhail Yuryevich, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
349

Identifying Deviating Systems with Unsupervised Learning

Panholzer, Georg January 2008 (has links)
<p>We present a technique to identify deviating systems among a group of systems in a</p><p>self-organized way. A compressed representation of each system is used to compute similarity measures, which are combined in an affinity matrix of all systems. Deviation detection and clustering is then used to identify deviating systems based on this affinity matrix.</p><p>The compressed representation is computed with Principal Component Analysis and</p><p>Kernel Principal Component Analysis. The similarity measure between two compressed</p><p>representations is based on the angle between the spaces spanned by the principal</p><p>components, but other methods of calculating a similarity measure are suggested as</p><p>well. The subsequent deviation detection is carried out by computing the probability of</p><p>each system to be observed given all the other systems. Clustering of the systems is</p><p>done with hierarchical clustering and spectral clustering. The whole technique is demonstrated on four data sets of mechanical systems, two of a simulated cooling system and two of human gait. The results show its applicability on these mechanical systems.</p>
350

Identification and Assessment of Gene Signatures in Human Breast Cancer/Identification et évaluation de signatures géniques dans le cancer du sein humain

Haibe-Kains, Benjamin B 02 April 2009 (has links)
This thesis addresses the use of machine learning techniques to develop clinical diagnostic tools for breast cancer using molecular data. These tools are designed to assist physicians in their evaluation of the clinical outcome of breast cancer (referred to as prognosis). The traditional approach to evaluating breast cancer prognosis is based on the assessment of clinico-pathologic factors known to be associated with breast cancer survival. These factors are used to make recommendations about whether further treatment is required after the removal of a tumor by surgery. Treatment such as chemotherapy depends on the estimation of patients' risk of relapse. Although current approaches do provide good prognostic assessment of breast cancer survival, clinicians are aware that there is still room for improvement in the accuracy of their prognostic estimations. In the late nineties, new high throughput technologies such as the gene expression profiling through microarray technology emerged. Microarrays allowed scientists to analyze for the first time the expression of the whole human genome ("transcriptome"). It was hoped that the analysis of genome-wide molecular data would bring new insights into the critical, underlying biological mechanisms involved in breast cancer progression, as well as significantly improve prognostic prediction. However, the analysis of microarray data is a difficult task due to their intrinsic characteristics: (i) thousands of gene expressions are measured for only few samples; (ii) the measurements are usually "noisy"; and (iii) they are highly correlated due to gene co-expressions. Since traditional statistical methods were not adapted to these settings, machine learning methods were picked up as good candidates to overcome these difficulties. However, applying machine learning methods for microarray analysis involves numerous steps, and the results are prone to overfitting. Several authors have highlighted the major pitfalls of this process in the early publications, shedding new light on the promising but overoptimistic results. Since 2002, large comparative studies have been conducted in order to identify the key characteristics of successful methods for class discovery and classification. Yet methods able to identify robust molecular signatures that can predict breast cancer prognosis have been lacking. To fill this important gap, this thesis presents an original methodology dealing specifically with the analysis of microarray and survival data in order to build prognostic models and provide an honest estimation of their performance. The approach used for signature extraction consists of a set of original methods for feature transformation, feature selection and prediction model building. A novel statistical framework is presented for performance assessment and comparison of risk prediction models. In terms of applications, we show that these methods, used in combination with a priori biological knowledge of breast cancer and numerous public microarray datasets, have resulted in some important discoveries. In particular, the research presented here develops (i) a robust model for the identification of breast molecular subtypes and (ii) a new prognostic model that takes into account the molecular heterogeneity of breast cancers observed previously, in order to improve traditional clinical guidelines and state-of-the-art gene signatures./Cette thèse concerne le développement de techniques d'apprentissage (machine learning) afin de mettre au point de nouveaux outils cliniques basés sur des données moleculaires. Nous avons focalisé notre recherche sur le cancer du sein, un des cancers les plus fréquemment diagnostiqués. Ces outils sont développés dans le but d'aider les médecins dans leur évaluation du devenir clinique des patients cancéreux (cf. le pronostique). Les approches traditionnelles d'évaluation du pronostique d'un patient cancéreux se base sur des critères clinico-pathologiques connus pour être prédictifs de la survie. Cette évaluation permet aux médecins de décider si un traitement est nécessaire après l'extraction de la tumeur. Bien que les outils d'évaluation traditionnels sont d'une aide importante, les cliniciens sont conscients de la nécessité d'améliorer de tels outils. Dans les années 90, de nouvelles technologies à haut-débit, telles que le profilage de l'expression génique par biopuces à ADN (microarrays), ont été mises au point afin de permettre aux scientifiques d'analyser l'expression de l'entièreté du génôme de cellules cancéreuses. Ce nouveau type de données moléculaires porte l'espoir d'améliorer les outils pronostiques traditionnels et d'approfondir nos connaissances concernant la génèse du cancer du sein. Cependant ces données sont extrêmement difficiles à analyser à cause (i) de leur haute dimensionalité (plusieurs dizaines de milliers de gènes pour seulement quelques centaines d'expériences); (ii) du bruit important dans les mesures; (iii) de la collinéarité entre les mesures dûe à la co-expression des gènes. Depuis 2002, des études comparatives à grande échelle ont permis d'identifier les méthodes performantes pour l'analyse de groupements et la classification de données microarray, négligeant l'analyse de survie pertinente pour le pronostique dans le cancer du sein. Pour pallier ce manque, cette thèse présente une méthodologie originale adaptée à l'analyse de données microarray et de survie afin de construire des modèles pronostiques performants et robustes. En termes d'applications, nous montrons que cette méthodologie, utilisée en combinaison avec des connaissances biologiques a priori et de nombreux ensembles de données publiques, a permis d'importantes découvertes. En particulier, il résulte de la recherche presentée dans cette thèse, le développement d'un modèle robuste d'identification des sous-types moléculaires du cancer du sein et de plusieurs signatures géniques améliorant significativement l'état de l'art au niveau pronostique.

Page generated in 0.102 seconds