• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5598
  • 577
  • 282
  • 275
  • 167
  • 157
  • 83
  • 66
  • 50
  • 42
  • 24
  • 21
  • 20
  • 19
  • 12
  • Tagged with
  • 9041
  • 9041
  • 3028
  • 1688
  • 1534
  • 1522
  • 1416
  • 1358
  • 1192
  • 1186
  • 1157
  • 1128
  • 1113
  • 1024
  • 1020
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Modeling Mobile User Behavior for Anomaly Detection

Buthpitiya, Senaka 01 April 2014 (has links)
As ubiquitous computing (ubicomp) technologies reach maturity, smart phones and context-based services are gaining mainstream popularity. A smart phone accompanies its user throughout (nearly) all aspects of his life, becoming an indispensable assistant the busy user relies on to help navigate his life, using map applications to navigate the physical world, email and instant messaging applications to keep in touch, media player applications to be entertained, etc. As a smart phone is capable of sensing the physical and virtual context of the user with an array of “hard” sensors (e.g., GPS, accelerometer) and “soft” sensors (e.g., email, social network, calendar),it is well-equipped to tailor the assistance it provides to the user. Over the life of a smart phone, it is entrusted with an enormous amount of personal information, everything from context-information sensed by the phone to contact lists to call-logs to passwords. Based on this rich set of information it is possible to model the behavior of the user, and use the models to detect anomalies (i.e., significant variations) in the user’s behavior. Anomaly detection capabilities enable a variety of application domains such as device theft detection, improved authentication mechanisms, impersonation, prevention, physical emergency detection, remote elder-care monitoring, and other proactive services. There has been extensive prior research on anomaly detection in various application domain areas (e.g., fraud detection, intrusion detection). Yet these approaches cannot be used in ubicomp environments as 1) they are very application-specific and not versatile enough to learn complex day to day behavior of users, 2) they work with a very small number of information sources with a relatively uniform stream of information (unlike sensor data from mobile devices), and 3) most approaches require labeled or semi-labeled data about anomalies (in ubicomp environments, it is very costly to create labeled datasets). Existing work in the field of anomaly detection in ubicomp environments is quite sparse. Most of the existing work focuses on using a single sensor information stream (GPS in most cases) to detect anomalies in the user’s behavior. However there exists a somewhat richer vein of prior work in modeling user behavior with the goal of behavior prediction; this is again limited mostly to a single sensor stream or single type of prediction (mostly location). This dissertation presents the notion of modeling mobile user behavior as a collection of models each capturing an aspect of the user’s behavior such as indoor mobility, typing patterns, calling patterns. A novel mechanism is developed for combining these models (i.e.,CobLE), which operate on asynchronous information sources from the mobile device, taking into consider how well each model is estimated to perform in the current context. These ideas are concretely implemented in an extensible framework, McFAD. Evaluations carried out using real-world datasets on this framework in contrast to prior work show that the framework for detecting anomalous behavior, 1) vastly reduces the training data requirement, 2) increases coverage, and 3) dramatically increases performance.
422

Improved sequence-read simulation for (meta)genomics

2014 September 1900 (has links)
There are many programs available for generating simulated whole-genome shotgun sequence reads. The data generated by many of these programs follow predefined models, which limits their use to the authors' original intentions. For example, many models assume that read lengths follow a uniform or normal distribution. Other programs generate models from actual sequencing data, but are limited to reads from single-genome studies. To our knowledge, there are no programs that allow a user to generate simulated data for metagenomics applications following empirical read-length distributions and quality profiles based on empirically-derived information from actual sequencing data. We present BEAR (Better Emulation for Artificial Reads), a program that uses a machine-learning approach to generate reads with lengths and quality values that closely match empirically-derived distributions. BEAR can emulate reads from various sequencing platforms, including Illumina, 454, and Ion Torrent. BEAR requires minimal user input, as it automatically determines appropriate parameter settings from user-supplied data. BEAR also uses a unique method for deriving run-specific error rates, and extracts useful statistics from the metagenomic data itself, such as quality-error models. Many existing simulators are specific to a particular sequencing technology; however, BEAR is not restricted in this way. Because of its flexibility, BEAR is particularly useful for emulating the behaviour of technologies like Ion Torrent, for which no dedicated sequencing simulators are currently available. BEAR is also the first metagenomic sequencing simulator program that automates the process of generating abundances, which can be an arduous task. BEAR is useful for evaluating data processing tools in genomics. It has many advantages over existing comparable software, such as generating more realistic reads and being independent of sequencing technology, and has features particularly useful for metagenomics work.
423

Automated Resolution Selection for Image Segmentation

Al-Qunaieer, Fares January 2014 (has links)
It is well known in image processing in general, and hence in image segmentation in particular, that computational cost increases rapidly with the number and dimensions of the images to be processed. Several fields, such as astronomy, remote sensing, and medical imaging, use very large images, which might also be 3D and/or captured at several frequency bands, all adding to the computational expense. Multiresolution analysis is one method of increasing the efficiency of the segmentation process. One multiresolution approach is the coarse-to-fine segmentation strategy, whereby the segmentation starts at a coarse resolution and is then fine-tuned during subsequent steps. Until now, the starting resolution for segmentation has been selected arbitrarily with no clear selection criteria. The research conducted for this thesis showed that starting from different resolutions for image segmentation results in different accuracies and speeds, even for images from the same dataset. An automated method for resolution selection for an input image would thus be beneficial. This thesis introduces a framework for the selection of the best resolution for image segmentation. First proposed is a measure for defining the best resolution based on user/system criteria, which offers a trade-off between accuracy and time. A learning approach is then described for the selection of the resolution, whereby extracted image features are mapped to the previously determined best resolution. In the learning process, class (i.e., resolution) distribution is imbalanced, making effective learning from the data difficult. A variant of AdaBoost, called RAMOBoost, is therefore used in this research for the learning-based selection of the best resolution for image segmentation. RAMOBoost is designed specifically for learning from imbalanced data. Two sets of features are used: Local Binary Patterns (LBP) and statistical features. Experiments conducted with four datasets using three different segmentation algorithms show that the resolutions selected through learning enable much faster segmentation than the original ones, while retaining at least the original accuracy. For three of the four datasets used, the segmentation results obtained with the proposed framework were significantly better than with the original resolution with respect to both accuracy and time.
424

Weakly Supervised Learning Algorithms and an Application to Electromyography

Hesham, Tameem January 2014 (has links)
In the standard machine learning framework, training data is assumed to be fully supervised. However, collecting fully labelled data is not always easy. Due to cost, time, effort or other types of constraints, requiring the whole data to be labelled can be difficult in many applications, whereas collecting unlabelled data can be relatively easy. Therefore, paradigms that enable learning from unlabelled and/or partially labelled data have been growing recently in machine learning. The focus of this thesis is to provide algorithms that enable weakly annotating unlabelled parts of data not provided in the standard supervised setting consisting of an instance-label pair for each sample, then learning from weakly as well as strongly labelled data. More specifically, the bulk of the thesis aims at finding solutions for data that come in the form of bags or groups of instances where available information about the labels is at the bag level only. This is the form of the electromyographic (EMG) data, which represent the main application of the thesis. Electromyographic (EMG) data can be used to diagnose muscles as either normal or suffering from a neuromuscular disease. Muscles can be classified into one of three labels; normal, myopathic or neurogenic. Each muscle consists of motor units (MUs). Equivalently, an EMG signal detected from a muscle consists of motor unit potential trains (MUPTs). This data is an example of partially labelled data where instances (MUs) are grouped in bags (muscles) and labels are provided for bags but not for instances. First, we introduce and investigate a weakly supervised learning paradigm that aims at improving classification performance by using a spectral graph-theoretic approach to weakly annotate unlabelled instances before classification. The spectral graph-theoretic phase of this paradigm groups unlabelled data instances using similarity graph models. Two new similarity graph models are introduced as well in this paradigm. This paradigm improves overall bag accuracy for EMG datasets. Second, generative modelling approaches for multiple-instance learning (MIL) are presented. We introduce and analyse a variety of model structures and components of these generative models and believe it can serve as a methodological guide to other MIL tasks of similar form. This approach improves overall bag accuracy, especially for low-dimensional bags-of-instances datasets like EMG datasets. MIL generative models provide an example of models where probability distributions need to be represented compactly and efficiently, especially when number of variables of a certain model is large. Sum-product networks (SPNs) represent a relatively new class of deep probabilistic models that aims at providing a compact and tractable representation of a probability distribution. SPNs are used to model the joint distribution of instance features in the MIL generative models. An SPN whose structure is learnt by a structure learning algorithm introduced in this thesis leads to improved bag accuracy for higher-dimensional datasets.
425

Atlas Simulation: A Numerical Scheme for Approximating Multiscale Diffusions Embedded in High Dimensions

Crosskey, Miles Martin January 2014 (has links)
<p>When simulating multiscale stochastic differential equations (SDEs) in high-dimensions, separation of timescales and high-dimensionality can make simulations expensive. The computational cost is dictated by microscale properties and interactions of many variables, while interesting behavior often occurs on the macroscale with few important degrees of freedom. For many problems bridging the gap between the microscale and macroscale by direct simulation is computationally infeasible, and one would like to learn a fast macroscale simulator. In this paper we present an unsupervised learning algorithm that uses short parallelizable microscale simulations to learn provably accurate macroscale SDE models. The learning algorithm takes as input: the microscale simulator, a local distance function, and a homogenization scale. The learned macroscale model can then be used for fast computation and storage of long simulations. I will discuss various examples, both low- and high-dimensional, as well as results about the accuracy of the fast simulators we construct, and its dependency on the number of short paths requested from the microscale simulator.</p> / Dissertation
426

Machine Learning for Aerial Image Labeling

Mnih, Volodymyr 09 August 2013 (has links)
Information extracted from aerial photographs has found applications in a wide range of areas including urban planning, crop and forest management, disaster relief, and climate modeling. At present, much of the extraction is still performed by human experts, making the process slow, costly, and error prone. The goal of this thesis is to develop methods for automatically extracting the locations of objects such as roads, buildings, and trees directly from aerial images. We investigate the use of machine learning methods trained on aligned aerial images and possibly outdated maps for labeling the pixels of an aerial image with semantic labels. We show how deep neural networks implemented on modern GPUs can be used to efficiently learn highly discriminative image features. We then introduce new loss functions for training neural networks that are partially robust to incomplete and poorly registered target maps. Finally, we propose two ways of improving the predictions of our system by introducing structure into the outputs of the neural networks. We evaluate our system on the largest and most-challenging road and building detection datasets considered in the literature and show that it works reliably under a wide variety of conditions. Furthermore, we are releasing the first large-scale road and building detection datasets to the public in order to facilitate future comparisons with other methods.
427

Machine Learning for Aerial Image Labeling

Mnih, Volodymyr 09 August 2013 (has links)
Information extracted from aerial photographs has found applications in a wide range of areas including urban planning, crop and forest management, disaster relief, and climate modeling. At present, much of the extraction is still performed by human experts, making the process slow, costly, and error prone. The goal of this thesis is to develop methods for automatically extracting the locations of objects such as roads, buildings, and trees directly from aerial images. We investigate the use of machine learning methods trained on aligned aerial images and possibly outdated maps for labeling the pixels of an aerial image with semantic labels. We show how deep neural networks implemented on modern GPUs can be used to efficiently learn highly discriminative image features. We then introduce new loss functions for training neural networks that are partially robust to incomplete and poorly registered target maps. Finally, we propose two ways of improving the predictions of our system by introducing structure into the outputs of the neural networks. We evaluate our system on the largest and most-challenging road and building detection datasets considered in the literature and show that it works reliably under a wide variety of conditions. Furthermore, we are releasing the first large-scale road and building detection datasets to the public in order to facilitate future comparisons with other methods.
428

Learning Accurate Regressors for Predicting Survival Times of Individual Cancer Patients

Lin, Hsiu-Chin 06 1900 (has links)
Standard survival analysis focuses on population-based studies. The objective of our work, survival prediction, is different: to find the most accurate model for predicting the survival times for each individual patient. We view this as a regression problem, where we try to map the features for each patient to his/her survival time. This is challenging in medical data due to the presence of irrelevant features, outliers, and missing class labels. Our approach consists of two major steps: (1) apply various grouping methods to segregate patients, and (2) apply different regression to each sub-group we obtained from the first step. We focus our experiments on a data set of 2402 patients (1260 censored). Our final predictor can obtain an average relative absolute error < 0.54. The experimental results verify that we can effectively predict survival times with a combination of statistical and machine learning approaches.
429

A general framework for reducing variance in agent evaluation

White, Martha 06 1900 (has links)
In this work, we present a unified, general approach to variance reduction in agent evaluation using machine learning to minimize variance. Evaluating an agent's performance in a stochastic setting is necessary for agent development, scientific evaluation, and competitions. Traditionally, evaluation is done using Monte Carlo estimation (sample averages); the magnitude of the stochasticity in the domain or the high cost of sampling, however, can often prevent the approach from resulting in statistically significant conclusions. Recently, an advantage sum technique based on control variates has been proposed for constructing unbiased, low variance estimates of agent performance. The technique requires an expert to define a value function over states of the system, essentially a guess of the state's unknown value. In this work, we propose learning this value function from past interactions between agents in some target population. Our learned value functions have two key advantages: they can be applied in domains where no expert value function is available and they can result in tuned evaluation for a specific population of agents (e.g., novice versus advanced agents). This work has three main contributions. First, we consolidate previous work in using control variates for variance reduction into one unified, general framework and summarize the connections between this previous work. Second, our framework makes variance reduction practically possible in any sequential decision making task where designing the expert value function is time-consuming, difficult or essentially impossible. We prove the optimality of our approach and extend the theoretical understanding of advantage sum estimators. In addition, we significantly extend the applicability of advantage sum estimators and discuss practical methods for using our framework in real-world scenarios. Finally, we provide low-variance estimators for three poker domains previously without variance reduction and improve strategy selection in the expert-level University of Alberta poker bot.
430

Learning multi-agent pursuit of a moving target

Lu, Jieshan 11 1900 (has links)
In this thesis we consider the task of catching a moving target with multiple pursuers, also known as the “Pursuit Game”, in which coordination among the pursuers is critical. Our testbed is inspired by the pursuit problem in video games, which require fast planning to guarantee fluid frame rates. We apply supervised machine learning methods to automatically derive efficient multi-agent pursuit strategies on rectangular grids. Learning is achieved by computing training data off-line and exploring the game tree on small problems. We also generalize the data to previously unseen and larger problems by learning robust pursuit policies, and run empirical comparisons between several sets of state features using a simple learning architecture. The empirical results show that 1) the application of learning across different maps can help improve game-play performance, especially on non-trivial maps against intelligent targets, and 2) simple heuristic works effectively on simple maps or less intelligent targets.

Page generated in 0.0952 seconds