• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 13
  • 13
  • 13
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Realization of Model-Driven Engineering for Big Data: A Baseball Analytics Use Case

Koseler, Kaan Tamer 27 April 2018 (has links)
No description available.
12

Разработка системы для оценки успеваемости студентов на образовательных онлайн курсах с использованием методов машинного обучения : магистерская диссертация / Development of a system for assessing student performance in online educational courses using machine learning methods

Соломеин, А. С., Solomein, A. S. January 2024 (has links)
The object of the study is machine learning methods used to assess student performance in online courses. The goal of the final qualifying work is to develop a tool that uses machine learning methods to assess student performance in online educational courses. Methods or methodology for carrying out work: analytical research, software implementation. The subject of the work is to determine the basic concepts in assessing the performance of students in online courses. This paper presents the development of a machine learning-based system for assessing student performance in online courses. The main goal is to create an efficient, scalable and reliable tool that automates the process of predicting academic performance and provides useful information for students, teachers and the educational platform. The research includes comprehensive domain analysis, task analysis, model training and economic evaluation. Key contributions include the analysis and implementation of a CATboost-based machine learning model, which achieved strong performance with an ROC-AUC of 0.88 and a balanced accuracy of 0.78. The study also details the process of data preparation, tuning of model hyperparameters, and integration of the system with existing learning management systems (LMS). Cost-benefit and product performance analyzes demonstrate significant long-term benefits, highlighting high return on investment and improved operational efficiency. The system has a positive impact on various stakeholders by providing timely feedback and personalized support to students, reducing administrative burden on faculty, and increasing institutional reputation and revenue. Overall, this work highlights the potential of machine learning to predict student performance, improve learning outcomes, and create more effective educational environments. The developed system represents a valuable tool for educational institutions seeking to expand their online learning offerings and better support their students and staff. / Объектом исследования является методы машинного обучения применяемые для оценки успеваемости студентов на онлайн курсах. Целью выпускной квалификационной работы является разработка инструмента, который использует методы машинного обучения для оценки успеваемости студентов на образовательных онлайн курсах. Методы или методология проведения работы: аналитическое исследование, программная реализация. Предметом работы является определение основных концепций в оценке успеваемости обучающихся на онлайн курсах В данной работе представлена разработка системы на основе машинного обучения для оценки успеваемости студентов на онлайн-курсах. Основная цель — создать эффективный, масштабируемый и надежный инструмент, который автоматизирует процесс прогнозирования успеваемости и предоставляет полезную информацию для студентов, преподавателей и образовательной платформы. Исследование включает в себя комплексный анализ предметной области, анализ задач, обучение модели и экономическую оценку. Ключевой вклад включает анализ и внедрение модели машинного обучения на основе CATboost, которая достигла высоких показателей производительности с показателем ROC-AUC 0,88 и сбалансированной точностью 0,78. В исследовании также подробно описан процесс подготовки данных, настройка гиперпараметров модели и интеграция системы с существующими системами управления обучением (LMS). Анализ экономической эффективности и эффективности продукта демонстрирует значительные долгосрочные преимущества, подчеркивая высокую отдачу от инвестиций и повышение операционной эффективности. Система положительно влияет на различные заинтересованные стороны, обеспечивая своевременную обратную связь и персонализированную поддержку для студентов, снижая административную нагрузку на преподавателей, а также повышая репутацию и доходы учреждения. В целом, эта работа подчеркивает потенциал машинного обучения в прогнозировании успеваемости студентов, улучшении результатов обучения и создании более эффективной образовательной среды. Разработанная система представляет собой ценный инструмент для образовательных учреждений, стремящихся расширить свои предложения онлайн-обучения и улучшить поддержку своих студентов и сотрудников.
13

Training a Neural Network using Synthetically Generated Data / Att träna ett neuronnät med syntetisktgenererad data

Diffner, Fredrik, Manjikian, Hovig January 2020 (has links)
A major challenge in training machine learning models is the gathering and labeling of a sufficiently large training data set. A common solution is the use of synthetically generated data set to expand or replace a real data set. This paper examines the performance of a machine learning model trained on synthetic data set versus the same model trained on real data. This approach was applied to the problem of character recognition using a machine learning model that implements convolutional neural networks. A synthetic data set of 1’240’000 images and two real data sets, Char74k and ICDAR 2003, were used. The result was that the model trained on the synthetic data set achieved an accuracy that was about 50% better than the accuracy of the same model trained on the real data set. / Vid utvecklandet av maskininlärningsmodeller kan avsaknaden av ett tillräckligt stort dataset för träning utgöra ett problem. En vanlig lösning är att använda syntetiskt genererad data för att antingen utöka eller helt ersätta ett dataset med verklig data. Denna uppsats undersöker prestationen av en maskininlärningsmodell tränad på syntetisk data jämfört med samma modell tränad på verklig data. Detta applicerades på problemet att använda ett konvolutionärt neuralt nätverk för att tyda tecken i bilder från ”naturliga” miljöer. Ett syntetiskt dataset bestående av 1’240’000 samt två stycken dataset med tecken från bilder, Char74K och ICDAR2003, användes. Resultatet visar att en modell tränad på det syntetiska datasetet presterade ca 50% bättre än samma modell tränad på Char74K.

Page generated in 0.1072 seconds