1 |
The development of Florida length based vehicle classification scheme using support vector machinesMauga, Timur. Mussa, Renatus. January 2006 (has links)
Thesis (M.S.)--Florida State University, 2006. / Advisor: Renatus Mussa, Florida State University, College of Engineering, Dept. of Civil and Environmental Engineering Title and description from dissertation home page (viewed Sept. 19, 2006). Document formatted into pages; contains xi, 202 pages. Includes bibliographical references.
|
2 |
Deep Reinforcement Learning Adaptive Traffic Signal Control / Reinforcement Learning Traffic Signal ControlGenders, Wade 22 November 2018 (has links)
Sub-optimal automated transportation control systems incur high mobility, human health and environmental costs. With society reliant on its transportation systems for the movement of individuals, goods and services, minimizing these costs benefits many. Intersection traffic signal controllers are an important element of modern transportation systems that govern how vehicles traverse road infrastructure. Many types of traffic signal controllers exist; fixed time, actuated and adaptive. Adaptive traffic signal controllers seek to minimize transportation costs through dynamic control of the intersection. However, many existing adaptive traffic signal controllers rely on heuristic or expert knowledge and were not originally designed for scalability or for transportation’s big data future. This research addresses the aforementioned challenges by developing a scalable system for adaptive traffic signal control model development using deep reinforcement learning in traffic simulation. Traffic signal control can be modelled as a sequential decision-making problem; reinforcement learning can solve sequential decision-making problems by learning an optimal policy. Deep reinforcement learning makes use of deep neural networks, powerful function approximators which benefit from large amounts of data. Distributed, parallel computing techniques are used to provide scalability, with the proposed methods validated on a simulation of the City of Luxembourg, Luxembourg, consisting of 196 intersections. This research contributes to the body of knowledge by successfully developing a scalable system for adaptive traffic signal control model development and validating it on the largest traffic microsimulator in the literature. The proposed system reduces delay, queues, vehicle stopped time and travel time compared to conventional traffic signal controllers. Findings from this research include that using reinforcement learning methods which explicitly develop the policy offers improved performance over purely value-based methods. The developed methods are expected to mitigate the problems caused by sub-optimal automated transportation signal controls systems, improving mobility and human health and reducing environmental costs. / Thesis / Doctor of Philosophy (PhD) / Inefficient transportation systems negatively impact mobility, human health and the environment. The goal of this research is to mitigate these negative impacts by improving automated transportation control systems, specifically intersection traffic signal controllers. This research presents a system for developing adaptive traffic signal controllers that can efficiently scale to the size of cities by using machine learning and parallel computation techniques. The proposed system is validated by developing adaptive traffic signal controllers for 196 intersections in a simulation of the City of Luxembourg, Luxembourg, successfully reducing delay, queues, vehicle stopped time and travel time.
|
Page generated in 0.1589 seconds