• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7433
  • 1103
  • 1048
  • 794
  • 476
  • 291
  • 237
  • 184
  • 90
  • 81
  • 63
  • 52
  • 44
  • 43
  • 42
  • Tagged with
  • 14405
  • 9224
  • 3942
  • 2366
  • 1924
  • 1915
  • 1721
  • 1624
  • 1513
  • 1439
  • 1372
  • 1354
  • 1341
  • 1275
  • 1269
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Shrunken learning rates do not improve AdaBoost on benchmark datasets

Forrest, Daniel L. K. 30 November 2001 (has links)
Recent work has shown that AdaBoost can be viewed as an algorithm that maximizes the margin on the training data via functional gradient descent. Under this interpretation, the weight computed by AdaBoost, for each hypothesis generated, can be viewed as a step size parameter in a gradient descent search. Friedman has suggested that shrinking these step sizes could produce improved generalization and reduce overfitting. In a series of experiments, he showed that very small step sizes did indeed reduce overfitting and improve generalization for three variants of Gradient_Boost, his generic functional gradient descent algorithm. For this report, we tested whether reduced learning rates can also improve generalization in AdaBoost. We tested AdaBoost (applied to C4.5 decision trees) with reduced learning rates on 28 benchmark datasets. The results show that reduced learning rates provide no statistically significant improvement on these datasets. We conclude that reduced learning rates cannot be recommended for use with boosted decision trees on datasets similar to these benchmark datasets. / Graduation date: 2002
432

Simulation and performance evaluation of a graph reduction machine architecture /

Sarangi, Ananda G. January 1984 (has links)
Thesis (M.S.)--Oregon Graduate Center, 1984.
433

Development and assessment of machine learning attributes for ortholog detection

Lin, Ying. January 2006 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: John Case, Dept. of Computer and Information Sciences. Includes bibliographical references.
434

Studies on support vector machines and applications to video object extraction

Liu, Yi, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 147-155).
435

Computer simulation of the dynamics and control of an energy-efficient robot leg /

Cheng, Fan-Tien, January 1982 (has links)
Thesis (M.S.)--Ohio State University, 1982. / Includes bibliographical references.
436

Enhancement of Random Forests Using Trees with Oblique Splits

Parfionovas, Andrejus 01 May 2013 (has links)
This work presents an enhancement to the classification tree algorithm which forms the basis for Random Forests. Differently from the classical tree-based methods that focus on one variable at a time to separate the observations, the new algorithm performs the search for the best split in two-dimensional space using a linear combination of variables. Besides the classification, the method can be used to determine variables interaction and perform feature extraction. Theoretical investigations and numerical simulations were used to analyze the properties and performance of the new approach. Comparison with other popular classification methods was performed using simulated and real data examples. The algorithm was implemented as an extension package for the statistical computing environment R and is available for free download under the GNU General Public License.
437

Learning Probabilistic Models for Visual Motion

Ross, David A. 26 February 2009 (has links)
A fundamental goal of computer vision is the ability to analyze motion. This can range from the simple task of locating or tracking a single rigid object as it moves across an image plane, to recovering the full pose parameters of a collection of nonrigid objects interacting in a scene. The current state of computer vision research, as with the preponderance of challenges that comprise "artificial intelligence", is that the abilities of humans can only be matched in very narrow domains by carefully and specifically engineered systems. The key to broadening the applicability of these successful systems is to imbue them with the flexibility to handle new inputs, and to adapt automatically without the manual intervention of human engineers. In this research we attempt to address this challenge by proposing solutions to motion analysis tasks that are based on machine learning. We begin by addressing the challenge of tracking a rigid object in video, presenting two complementary approaches. First we explore the problem of learning a particular choice of appearance model---principal components analysis (PCA)---from a very limited set of training data. However, PCA is far from the only appearance model available. This raises the question: given a new tracking task, how should one select the most-appropriate models of appearance and dynamics? Our second approach proposes a data-driven solution to this problem, allowing the choice of models, along with their parameters, to be learned from a labelled video sequence. Next we consider motion analysis at a higher-level of organization. Given a set of trajectories obtained by tracking various feature points, how can we discover the underlying non-rigid structure of the object or objects? We propose a solution that models the observed sequence in terms of probabilistic "stick figures", under the assumption that the relative joint angles between sticks can change over time, but their lengths and connectivities are fixed. We demonstrate the ability to recover the invariant structure and the pose of articulated objects from a number of challenging datasets.
438

Visual Object Recognition Using Generative Models of Images

Nair, Vinod 01 September 2010 (has links)
Visual object recognition is one of the key human capabilities that we would like machines to have. The problem is the following: given an image of an object (e.g. someone's face), predict its label (e.g. that person's name) from a set of possible object labels. The predominant approach to solving the recognition problem has been to learn a discriminative model, i.e. a model of the conditional probability $P(l|v)$ over possible object labels $l$ given an image $v$. Here we consider an alternative class of models, broadly referred to as \emph{generative models}, that learns the latent structure of the image so as to explain how it was generated. This is in contrast to discriminative models, which dedicate their parameters exclusively to representing the conditional distribution $P(l|v)$. Making finer distinctions among generative models, we consider a supervised generative model of the joint distribution $P(v,l)$ over image-label pairs, an unsupervised generative model of the distribution $P(v)$ over images alone, and an unsupervised \emph{reconstructive} model, which includes models such as autoencoders that can reconstruct a given image, but do not define a proper distribution over images. The goal of this thesis is to empirically demonstrate various ways of using these models for object recognition. Its main conclusion is that such models are not only useful for recognition, but can even outperform purely discriminative models on difficult recognition tasks. We explore four types of applications of generative/reconstructive models for recognition: 1) incorporating complex domain knowledge into the learning by inverting a synthesis model, 2) using the latent image representations of generative/reconstructive models for recognition, 3) optimizing a hybrid generative-discriminative loss function, and 4) creating additional synthetic data for training more accurate discriminative models. Taken together, the results for these applications support the idea that generative/reconstructive models and unsupervised learning have a key role to play in building object recognition systems.
439

Learning Probabilistic Models for Visual Motion

Ross, David A. 26 February 2009 (has links)
A fundamental goal of computer vision is the ability to analyze motion. This can range from the simple task of locating or tracking a single rigid object as it moves across an image plane, to recovering the full pose parameters of a collection of nonrigid objects interacting in a scene. The current state of computer vision research, as with the preponderance of challenges that comprise "artificial intelligence", is that the abilities of humans can only be matched in very narrow domains by carefully and specifically engineered systems. The key to broadening the applicability of these successful systems is to imbue them with the flexibility to handle new inputs, and to adapt automatically without the manual intervention of human engineers. In this research we attempt to address this challenge by proposing solutions to motion analysis tasks that are based on machine learning. We begin by addressing the challenge of tracking a rigid object in video, presenting two complementary approaches. First we explore the problem of learning a particular choice of appearance model---principal components analysis (PCA)---from a very limited set of training data. However, PCA is far from the only appearance model available. This raises the question: given a new tracking task, how should one select the most-appropriate models of appearance and dynamics? Our second approach proposes a data-driven solution to this problem, allowing the choice of models, along with their parameters, to be learned from a labelled video sequence. Next we consider motion analysis at a higher-level of organization. Given a set of trajectories obtained by tracking various feature points, how can we discover the underlying non-rigid structure of the object or objects? We propose a solution that models the observed sequence in terms of probabilistic "stick figures", under the assumption that the relative joint angles between sticks can change over time, but their lengths and connectivities are fixed. We demonstrate the ability to recover the invariant structure and the pose of articulated objects from a number of challenging datasets.
440

Visual Object Recognition Using Generative Models of Images

Nair, Vinod 01 September 2010 (has links)
Visual object recognition is one of the key human capabilities that we would like machines to have. The problem is the following: given an image of an object (e.g. someone's face), predict its label (e.g. that person's name) from a set of possible object labels. The predominant approach to solving the recognition problem has been to learn a discriminative model, i.e. a model of the conditional probability $P(l|v)$ over possible object labels $l$ given an image $v$. Here we consider an alternative class of models, broadly referred to as \emph{generative models}, that learns the latent structure of the image so as to explain how it was generated. This is in contrast to discriminative models, which dedicate their parameters exclusively to representing the conditional distribution $P(l|v)$. Making finer distinctions among generative models, we consider a supervised generative model of the joint distribution $P(v,l)$ over image-label pairs, an unsupervised generative model of the distribution $P(v)$ over images alone, and an unsupervised \emph{reconstructive} model, which includes models such as autoencoders that can reconstruct a given image, but do not define a proper distribution over images. The goal of this thesis is to empirically demonstrate various ways of using these models for object recognition. Its main conclusion is that such models are not only useful for recognition, but can even outperform purely discriminative models on difficult recognition tasks. We explore four types of applications of generative/reconstructive models for recognition: 1) incorporating complex domain knowledge into the learning by inverting a synthesis model, 2) using the latent image representations of generative/reconstructive models for recognition, 3) optimizing a hybrid generative-discriminative loss function, and 4) creating additional synthetic data for training more accurate discriminative models. Taken together, the results for these applications support the idea that generative/reconstructive models and unsupervised learning have a key role to play in building object recognition systems.

Page generated in 0.0786 seconds