• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Arcsin Limit Theorem of D-Optimal Designs for Weighted Polynomial Regression

Tsai, Jhong-Shin 10 June 2009 (has links)
Consider the D-optimal designs for the dth-degree polynomial regression model with a bounded and positive weight function on a compact interval. As the degree of the model goes to infinity, we show that the D-optimal design converges weakly to the arcsin distribution. If the weight function is equal to 1, we derive the formulae of the values of the D-criterion for five classes of designs including (i) uniform density design; (ii) arcsin density design; (iii) J_{1/2,1/2} density design; (iv) arcsin support design and (v) uniform support design. The comparison of D-efficiencies among these designs are investigated; besides, the asymptotic expansions and limits of their D-efficiencies are also given. It shows that the D-efficiency of the arcsin support design is the highest among the first four designs.

Page generated in 0.1113 seconds