• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linkage of Macro- and Micro-scale Modelling Tools for Additive Manufacturing

Sjöström, Julia January 2020 (has links)
Additive manufacturing methods for steel are competing against commercial production in an increasing pace. The geometry freedom together with the high strength and toughness due to extreme cooling rates make this method viable to use for high-performance components. The desirable material properties originate from the ultrafine grain structures. The production is often followed by a post hardening heat treatment to induce precipitation of other phases. The printing process does however bring several challenges such as cracking, pore formation, inclusions, residual stresses and distortions. It is therefore important to be able to predict the properties such as temperature evolution and residual stresses of the resulting part in order to avoid time consuming trial-and-error and unnecessary material waste. In order to link different parts and length scales of the process, the integrated computational materials engineering framework can be used where linkage tools couples results of different length scales. 18Ni300 maraging steel is a material that has been used extensively to produce parts by additive manufacturing, but there is still a wide scope for optimising the process and properties. In this thesis, the integrated computational materials engineering inspired framework is applied to link the process to the microstructure, which dictates the properties. Temperature evolution strongly influences the material properties, residual stresses and distortion in additive manufacturing. Therefore, simulations of temperature evolution for a selective laser melted 18Ni300 maraging steel have been performed by Simufact Additive and linked with the microstructure prediction tools in Thermo-Calc and DICTRA. Various printing parameters have been examined and resulting temperatures, cooling rates, segregations and martensitic start temperatures compared for different locations of the build part. Additionally, residual stresses and distortions were investigated in Simufact. It was found that higher laser energy density caused increased temperatures and cooling rates which generally created larger segregations of alloying elements and lower martensitic start temperatures at the intercellular region. There is however an impact from cooling rate and temperature independent of the energy density which makes energy density not an individual defining parameter for the segregations. By decreasing the baseplate temperature, lower temperatures below the martensitic start temperature were reached, enhancing martensite transformation. Primary dendrite arm spacing calculations were used to validate the cooling rates. The cell size corresponded well to literature of <1 μm. Distortions and residual stresses were very small. The calibration was based according to literature and need experimental values to be validated. The integrated framework demonstrated in this thesis provides an insight into the expected properties of the additively manufactured part which can decrease and replace trial-and-error methods. / dditiva tillverkningsmetoder för stål tävlar mot kommersiell produktion i en ökande takt. Geometrifriheten tillsammans med hög styrka och slagseghet på grund av extrema kylhastigheter gör den här metoden intressant att använda för högpresterande komponenter. De önskvärda materialegenskaperna härstammar från den ultrafina mikrostrukturen. Processen följs ofta av en värmebehandlande härdning för att inducera utskiljningar av andra faser. Printing processen innebär dock flertalet utmaningar som exempelvis sprickbildning, porer, inneslutningar, restspänningar och förvrängningar. Det är därför intressant och viktigt att förutspå egenskaper såsom temperaturutveckling och restspänningar av den slutgiltiga komponenten för att minska tidskrävande ”trial-and-error” och onödigt materialsvin. För att länka ihop olika delar och längdskalor av processen kan ”the integrated computational materials engineering” strukturen användas där länkverktyg kopplar ihop resultat av olika längdskalor. 18Ni300 maraging stål är ett material som har använts till additivt tillverkade produkter i hög utsträckning men det finns fortfarande mycket utrymme för optimering av processen och egenskaperna. I den här avhandlingen, den ”integrated computational materials engineering” inspirerade tillvägagångssättet används för att länka processen med mikrostrukturen, vilken bestämmer egenskaperna. Temperaturutveckling påverkar kraftigt materialegenskaper, restspänningar och deformation vid additiv tillverkning. Förutsägelse av temperatur för ett selektivt lasersmält 18Ni300 stål har därför genomförts i Simufact Additive och länkats med mikrostruktursförutsägande redskapen Thermo-Calc och DICTRA. Olika maskinparametrar har undersökts och efterföljande temperaturer, kylhastigheter, segregeringar och martensitiska starttemperaturer jämförts för olika delar av geometrin. Tilläggningsvis var även restspänningar och deformationer undersökta i Simufact. Det konstaterades att högre energidensitet för lasern orsakade högre temperaturer och kylhastighet vilket generellt skapade mer segregeringar av legeringsämnen och lägre martensitisk starttemperatur i de intercellulära områdena. Det är däremot en gemensam påverkan av kylhastighet och temperatur vilket gör att energidensitet inte är den enskilda bestämmande parametern över segregeringarna. Genom att sänka temperaturen på basplattan uppnåddes lägre temperaturer under den martensitiska starttemperaturen vilket förenklar den martensistiska omvandlingen. Beräkningar av primär dendritisk armlängd användes för att validera kylhastigheterna. Cellstorleken överensstämde bra med litteraturen på <1 μm. Deformationer och restspänningar var väldigt små. Kalibreringarna baserades på litteraturvärden och kräver experimentella värden för att valideras. Den integrerade strukturen  som demonstreras i den här avhandlingen förser en insikt i de förväntade egenskaperna av en additivt tillverkad del vilket kan minska och ersätta ”trial-and-error” metoder.

Page generated in 0.1044 seconds