• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 246
  • 23
  • 22
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 351
  • 175
  • 145
  • 145
  • 145
  • 51
  • 42
  • 36
  • 26
  • 24
  • 23
  • 23
  • 22
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Flame Retardancy Of Polyamide Compounds And Micro/nano Composites

Gunduz, Huseyin Ozgur 01 July 2009 (has links) (PDF)
In the first part of this dissertation, glass fiber reinforced/unreinforced polyamide 6 (PA6) and polyamide 66 (PA66) were compounded with three different flame retardants, which were melamine cyanurate, red phosphorus and brominated epoxy with antimony trioxide, by using an industrial scale twin screw extruder. Then, to investigate flame retardancy of these specimens, UL-94, Limiting Oxygen Index (LOI) and Mass Loss Cone Calorimeter (MLC) tests were carried out. In addition to flammability tests, thermogravimetric analysis (TGA) and tensile testing were performed. Results of the tensile tests were evaluated by relating them with fiber length distributions and fracture surface morphologies under scanning electron microscope (SEM). Incorporation of melamine cyanurate (MCA) to PA6 led to some increase in LOI value and minor reductions in Peak Heat Release Rate (PHRR) value. However, it failed to improve UL-94 rating. Moreover, poor compatibility of MCA with PA6 matrix caused significant reductions in tensile strength. Brominated epoxy in combination with antimony trioxide (Br/Sb) was compounded with both glass fiber reinforced PA6 and PA66. Br/Sb synergism was found to impart excellent flammability reductions in LOI value and UL-94 as V-0 rating. Effectiveness of Br/Sb flame retardant was also proven by the MLC measurements, which showed excessive reductions in PHRR and Total Heat Evolved (THE) values. On the other hand, Br/Sb shifted the degradation temperature 100&deg / C lower and decreased the tensile strength value, due to poor fiber-matrix adhesion and decreased fiber lengths. Red phosphorus (RP), when introduced to glass fiber reinforced PA66 induced V-0 rating in UL-94 together with significant increase in LOI value, and major decrease in PHRR. Degradation temperature was 20&deg / C lower while mechanical properties were kept at acceptable values compared to neat glass fiber reinforced PA66. In the second part of this dissertation, to investigate synergistic flame retardancy of nanoclays / glass fiber reinforced PA6 was compounded by certain nanoclay and an organo-phosphorus flame retardant (OP), which contains aluminum phosphinate, melamine polyphosphate and zinc borate, in a laboratory scale twin screw extruder. Exfoliated clay structure of the nanocomposites was assessed by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), while thermal stability and combustion behaviors were evaluated by TGA, LOI, UL-94 and MLC. Replacement of a certain fraction of the flame retardant with nanoclay was found to significantly reduce PHRR and THE values, and delay the ignition. Moreover, remarkable improvements were obtained in LOI values along with maintained UL-94 ratings. Residue characterization by ATR-FTIR and SEM ascribed the enhanced flame retardancy of nanocomposite specimens to the formation of a glassy boron-aluminum phosphate barrier reinforced by clay layers at the nanoscale.
172

Realization Of Neutral State Green Polymeric Materials

Durmus, Asuman 01 July 2009 (has links) (PDF)
Polymeric electrochromic materials that has as one of the three complementary colors (red, green, and blue) in the neutral form and become transparent via oxidation (or reduction), has a crucial importance towards use of these materials in electrochromic devices and displays. To reflect red or blue color in neutral state, the materials have to absorb at only one dominant wavelength. On the contrary, to have a green color, there should exist at least two simultaneous absorption bands in the red and blue regions of the visible spectrum where these bands should be controlled with the same applied potential. The transmissivity in the oxidized state is significantly important in addition to the neutral state color of the polymer. The optical contrast between the states is the decisive point for use of these materials for many electrochromic applications, especially as smart windows and displays. Hence, the material should possess two absorption bands with definite maximum points, and upon oxidation these bands should simultaneously vanish to have a transmissive state. A donor&ndash / acceptor approach can be utilized to solve this puzzle. It has been shown that insertion of alternating donor&ndash / acceptor units on the polymer backbone leads to a significant decrease in band gap due to the increased double bond character in the structure. In this study novel donor-acceptor type polymers were synthesized, and electrochromic properties were investigated in detail. PBDT is the first green electrochromic material which has a highly transmissive sky blue oxidized state. PDETQ was shown to be one of the few examples of neutral state green polymeric materials in literature. PDEQ has a bluish green color in the neutral state and a highly transmissive light blue oxidized state.
173

Synthesis And Characterization Of Electrochemically Polymerized Metal-free, Nickel And Zinc Containing Phthalocyanine Derivatives

Yavuz, Arzu 01 July 2009 (has links) (PDF)
In the first part of this study, 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl)-phthalonitrile (SNS-PN) was synthesized by utilizing 1,4-di(2-thienyl)-1,4- butadione (SOOS) and 4-aminophthalonitrile via Knorr-Paal Reaction. Nuclear magnetic resonance (1H NMR and 13C NMR) and fourier transform infrared (FTIR) spectroscopies were utilized for the characterization of this compound. SNS-PN monomer was then electrochemically polymerized in acetonitrile/0.2 M LiClO4 solvent/electrolyte couple. Characterizations of the resulting polymer P(SNS-PN) were carried out by cyclic voltammetry (CV), UV&ndash / vis and FTIR spectroscopic techniques. Spectroelectrochemical studies revealed that P(SNS-PN) has an electronic band gap of 2.5 eV and exhibits electrochromic behaviour. The switching ability of polymer was also monitored. It was also found that P(SNS-PN) was fluorescent and its fluorescence intensity enhanced in the presence of cations. In the second part, novel tetrakis (4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl)) substituted metal-free (H2Pc-SNS), zinc (ZnPc-SNS) and nickel phthalocyanine (NiPc-SNS) complexes were synthesized and characterized by elemental analysis, FTIR and UV-Vis spectroscopies. The solution redox properties of these complexes were also studied by using CV and differential pulse voltammetry. All of the complexes showed two reversible reduction peaks having ligand-based character and one irreversible oxidation peak. Also, the electrochemical polymerization of these complexes was performed in dichloromethane/tetrabutylammonium perchlorate solvent/electrolyte couple. Resulting polymer films were characterized by UV&ndash / vis and FTIR spectroscopic techniques and their electrochemical behaviors were investigated utilizing CV. In-situ spectroelectrochemical investigations revealed that all the polymer films could be reversibly cycled and exhibit electrochromic behavior. Furthermore, the band gap of P(H2Pc-SNS), P(ZnPc-SNS) and P(NiPc-SNS) were calculated as 2.38 eV, 2.25 eV and 2.69 eV, respectively. Moreover, the fluorescence property of the P(ZnPc-SNS) was investigated in dimethyl sulfoxide and toluene.
174

Photo-oxidative Degradation Of Abs Copolymer

Guzel, Aylin 01 September 2008 (has links) (PDF)
ABSTRACT PHOTO-OXIDATIVE DEGRADATION OF ABS COPOLYMER G&uuml / zel, Aylin M.S., Department of Polymer Science and Technology Supervisor: Prof. Dr. Teoman Tin&ccedil / er Co-Supervisor: Prof. Dr. Cevdet Kaynak September 2009, 55 pages Acrylonitrile-butadiene-styrene (ABS) polymer is one of the most popular copolymer having an elastomeric butadiene phase dispersed in rigid amorphous styrene and semi-crystalline acrylonitrile. Due to double bonds in the polybutadiene phase, ABS copolymers are very sensitive to photo-oxidative degradation. Photo-oxidation of butadiene rubber phase results in the formation of chromorphores and these chromorphores act as initiators in photo-oxidative degradation and after a while ABS starts yellowing. In this work, the relationship between the UV light and the yellowing of ABS samples was also investigated with respect to time. In this study, pure, light stabilized and commercial ABS samples were aged under UV light. As the UV light intensity increased from 800 to 2800 &amp / #61549 / W/cm2, yellowing of the samples were increased for pure ABS. This increase in yellowing of the samples was about 27 times higher compared to lower energy. In this study, UV stabilizers IRGANOX 1076 (sterically hindered phenolic antioxidant), IRGAFOS 168 (hydrolycally stable phosphite stabilizer) and TINUVIN P (hydroxyphenol benzotriazole) were used alone or in combination with each other. Pure ABS samples, commercial ABS samples and UV stabilized ABS samples were aged under the same UV light. UV aging degradation was followed by measuring the yellowness of the samples at certain time intervals. Yellowness of the samples was followed by using Coloreye XTH Spectrometer. Degradation in ABS, however, was followed by using FTIR with an increase in the peak area of carbonyl groups in the ABS matrix. Both color analysis and the FTIR analysis showed that combination of the IRGANOX 1076 and IRGAFOS 168 stabilizers gave the best stabilization. This revealed that combination of phenol and phosphate containing stabilizer is the most useful combination to prevent photo-oxidative degradation of ABS copolymer. Additionally, vegetable oil was applied to the surface of a new set of ABS samples and these samples were aged for 700 h. Yellowing tendency of these samples was compared with the yellowing tendency of ABS samples that are directly aged for 500 h. It was clearly observed that samples with oil smeared had more resistance to UV radiation with respect to others. This shows that oil acts protective layer to the UV light and oxygen and slow down the photo-oxidative degradation. Lastly some commercial ABS samples were compared to each other with respect to their yellowing tendency. Commercial ABS samples coded as K, L, A, B, C and D were aged under UV light at about 500 h. Sample A showed the best resistance against the yellowing among the other commercial ABS samples.
175

Polymerization And Characterization Of N-vinyl-2-pyrrolidone

Altinsoy, Sule 01 November 2009 (has links) (PDF)
N-vinyl-2-pyrrolidone, NVP, was polymerized by &amp / #56256 / &amp / #56394 / -radiation in the presence of atmospheric oxygen and under vacuum at different periods. Polymerization also conducted by using chemical initiator, &amp / #56256 / &amp / #56466 / -Azoisobutyronitrile, AIBN, in bulk at different temperatures and times. The activation energy for polymerization was found from Arrhenius plot as 31,8 kJ/mol. By using the Fox-Flory equation T&amp / #56256 / &amp / #56394 / and k values calculated for each polymerization methods. The polymer obtained was white gel type. The different types of polymer obtained were investigated by FT-IR, 1H-NMR and 13C-NMR, DSC, TGA and viscosity measurement methods. According to the FT-IR and NMR results, the polymerizations proceeded via vinyl group. As expected, solution viscosity measurements and DSC results showed that the glass transition temperature of polymer increases with increasing molecular weight.
176

The Synthesis Of Donor-acceptor Type Electroactive Monomers Bearing Pyrrole And Selenophene As The Donor Moieties And Their Polymers

Epik, Bugra 01 January 2010 (has links) (PDF)
Synthesis of new electroactive monomers are highly desired since these compounds can be utilized as active layers in many device applications such as ECDs, LEDs and solar cells. Pyrrole and selenophene bearing polymers were also proven to be excellent candidates as electrochromic materials. Benzothiodiazole can be coupled to to pyrrole and selenophene yield materials that can be polymerized to give donor acceptor type polymers. These donor-acceptor type materials / Poly(4,7-di(1H-pyrrol-2-yl)benzo[c][1,2,5]thiadiazole P(PYBTPY) and poly(4,7-di(selenophen-2-yl)benzo[c][1,2,5]thiadiazole P(SEBTSE) were synthesized via bromination, stannylation and Stille coupling reactions. Electrochemical and electrochromic properties of the polymers were examined in detail.
177

Preparation Of High Performance Acrylonitrile Copolymers

Aran, Bengi 01 December 2009 (has links) (PDF)
Acrylonitrile based engineering random copolymers were prepared via one step emulsion polymerization using ammonium persulfate (initiator), 1-dodecanthiol (chain transfer agent) and DOWFAX 8390 (surfactant) in the presence of water at approximately 65 0C. Three copolymer compositions were studied for novel polyacrylonitrile, (PAN)-polyhydroxyethyl acrylate (PHEA), PAN-polybutyl acrylate (PBA), novel PAN-polyt-butyl acrylate (PtBA), PAN-polyethyl acrylate (PEA) and PAN-polymethyl acrylate (PMA) with acrylate content varying from 8, 12 and 16 molar percent. Infrared spectroscopy, proton and carbon NMR were successfully utilized to confirm the chemical structure of copolymers. In order to determine the comonomer compositions in the copolymer structure, proton nuclear magnetic resonance, 1H NMR studies were carried out. Thermal (TGA, DSC) and mechanical properties of homo and copolymers were also investigated. Intrinsic viscosity (IV) measurements in dimethyl formamide (DMF) solution revealed that the molecular weight of the copolymers were quite enough to form ductile films. In this study, hydrogels and their copolymers of acrylonitrile (PAN-PHEA) were also studied. Some properties of the free standing copolymer films such as / swelling behaviors and densities were evaluated. It was also demonstrated that the nanocomposites of these copolymers could be utilized in filtration technology. Hence, novel PAN(88)-co-PMA(12) and polyaniline (PANI) nanocomposites were prepared at various PANI loadings to remove toxic chromium(VI) solution from water. Chemical structure, swelling and fracture morphology of the nanocomposites membranes were studied. It was observed that PANI had a great impact on the chromium removal. Permeate flux and rejection of chromium(VI) were demonstrated for various pHs and chromium(VI) concentrations. Finally, influences of comonomer composition on the thermal properties of the copolymers were investigated to input their structure property relation.
178

Synthesis And Characterization Of Copper Phthalocyanine Deposited Mica Titania Pigment

Topuz, Burcu Berna 01 January 2010 (has links) (PDF)
In the present work, anatase and rutile titanium dioxide (TiO2) coated lustrous mica pigments were prepared by heterogeneous nucleation method. Anatase-rutile phase transformation of the TiO2 on mica substrate was achieved by coating very thin layers of tin (IV) oxide on mica surfaces prior to TiO2 deposition. Muscovite mica, which was used in the experiments was sieved, pre-treated with sodium bicarbonate and decantated before coating process. The surface morphology of mica titania pigments and anatase-rutile phase transformation were investigated by SEM and XRD analyse, respectively. Also, microwave-assisted synthesis of copper phthalocyanine and tetracarboxamide copper phthalocyanine pigments were carried out with phthalic anhydride and trimellitic anhydride precursors, respectively. Molecular structures of these pigments were confirmed by FT-IR and UV-visible spectroscopy analyse. Furthermore, combination pigments were obtained by the process of deposition of copper phthalocyanine pigments on mica-titania pigment substrate in dimethyl formamide solvent. FT-IR analysis and XRD analyse were performed to observe the transformations in the crystal forms of copper phthalocyanines on the substrate. The surface morphologies of copper phthalocyanines on the mica titania pigments were investigated by SEM analysis. Varying amounts of copper phthalocyanines were deposited on the mica surfaces, and nitrogen elemental analysis was performed to determine the amount of copper phthalocyanines. The resulting pigments were incorporated into alkyd based resin to prepare paint samples. L*a*b* values, gloss property, and hardness of the paint samples were determined by color measuring device, gloss meter and hardness measuring device, respectively. The resulting combination pigments obtained in this study showed improved luster, hue, and color intensity. Furthermore, in literature it was reported that these pigments have very high bleed resistance. This can be attributed to large macromolecular structure of copper phthalocyanine on the surface of mica titania pigment that prevents bleeding of the pigment from the paint. Moreover, the paint samples obtained from combination pigments showed higher hardness with respect to the paint sample of the mica titania pigment.
179

Amperometric Cholesterol And Alcohol Biosensors Based On Conducting Polymers

Turkarslan, Ozlem 01 April 2010 (has links) (PDF)
Cholesterol and ethanol biosensors based on conducting polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-ethylenedioxypyrrole) (PEDOP) were constructed. Cholesterol oxidase (ChOx, from Pseudomonas fluorescens) and alcohol oxidase (AlcOx, from Pichia pastoris) were physically entrapped during electropolymerization of the monomers (Py, EDOT, EDOP) in phosphate buffer containing sodium dodecylsulfate (SDS) as the supporting electrolyte. The amperometric responses of the enzyme electrodes were measured monitoring oxidation current of H2O2 at +0.7 V in the absence of a mediator. Kinetic parameters, such as Km and Imax, operational and storage stabilities, effects of pH and temperature were determined for all entrapment supports. Based on Michaelis-Menten (Km) constants, it can be interpreted that both enzymes immobilized in PEDOT showed the highest affinities towards their substrates. Before testing the alcohol biosensors on alcoholic beverages, effects of interferents (glucose, acetic acid, citric acid, L-ascorbic acid) which might be present in beverages were determined. The alcohol content of the distilled beverages (vodka, dry cin, whisky, raki) was measured with these biosensors. A good match with the chromatography results (done by the companies) was observed.
180

Tuning The Optoelectronic Properties Of Conjugated Polymers Via Donor-acceptor-donor Architectures

Tarkuc, Simge 01 June 2010 (has links) (PDF)
A new class of &amp / #960 / -conjugated monomers was synthesized with combination of electron donating and electron-withdrawing heterocyclics to understand the effects of structural differences on electrochemical and optoelectronic properties of the resulting polymers. The use of this alternating donor-acceptor-donor strategy allows the synthesis of low band gap polymers in which the redox, electronic, and optical properties are controlled through easily approachable synthetic modification of the polymer backbone. This control allows fine-tuning of the band gap to values between 1.0 and 1.8 eV by making structural changes. These structural manipulations yield varied electronic absorption energies for a range of colors in the neutral polymer films, multi-colored electrochromism, and accessible states for reduction leading to n-type doping. The polymers prepared were characterized using cyclic voltammetry, colorimetry, and UV-Vis-NIR spectroscopy demonstrating that the polymers can undergo both p- and n-type doping and color changes in both redox states.

Page generated in 0.036 seconds