• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • Tagged with
  • 12
  • 11
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisch stabile Magnesiumphosphatschäume und deren Zytokompatibilität / Mechanically stable magnesium phosphate scaffolds and their cytocompatibility

Zimmermann, Sabine Annette January 2014 (has links) (PDF)
Magnesiumphosphatschäume nehmen auf Grund ihrer guten Resorbierbarkeit, unter physiologischen Bedingungen, einen immer größeren Stellenwert als Knochenersatzmaterial ein. Ein weiterer Vorteil ist der neutrale pH-Wert den das entstehende Material besitzt. Magnesiumphosphatschäume besitzen eine hochporöse offenporige Struktur um zum einen den Knochen nachzuahmen und zum anderen die Steuerung und Bildung von Knochengewebe zu ermöglichen. In der vorliegenden Arbeit wurden die mechanischen Eigenschaften als auch die Zytokompatibilität der hergestellten Schäume untersucht. Es wurden unterschiedliche Herstellungsverfahren genutzt um Magnesiumphosphatschäume zu erhalten. Zum einen das Replika- Verfahren, die dabei entstandenen Farringtonit Schäume (Mg3(PO4)2, Farringtonit) wurden zu Struvit ((NH4)Mg(PO4)•6H2O) umgewandelt bzw. mit PLGA infiltriert und auf ihre mechanische Eigenschaften hin untersucht. Zum anderen wurde ein proteinbasierter Schaumbildner verwendet. Die Zytokompatibilitätsprüfung wurde mit der Osteosarkomzelllinie MG-63 durchgeführt. Es erfolgte die Untersuchung der Zellproliferation und der Zellaktivität (WST). Zudem wurden Proben mittels Licht- und Elektronenmikroskopie analysiert. Die Feststellung der Proteinexpression erfolgte nach gelelektrophoretischer Auftrennung mittels Western Blot und PCR Analyse. / Mg-phosphate ceramics have gained growing interest as bone replacement materials due to their ability to degrade under physiological conditions. Another advantage of these materials is the setting at neutral pH value since the powder as well as the liquid component are non acidic. In order to mimic cancellous bone and to promote tissue repair mechanisms a highly macroporous structure with open cells is desired to allow cell ingrowth. The mechanical properties and the cytocompatibility of newly developed scaffolds were analyzed in this study. Open porous magnesiumphosphate scaffolds were produced by the Replika-technique and by a protein based foam generating agent. Farringtonite scaffolds (Mg3(PO4)2, farringtonite) were modified by transformation to struvite ((NH4)Mg(PO4)•6H2O) or infiltrated with PLGA. Physical sample characterization was done. Cytocompatibility was tested using osteoblasts like cell line MG63. Cell number and cell activity (WST) were tested. The surface dependent expression of osteoblast specific proteins as well as an indicator for adhesion were tested.
2

Synthesis, Characterization and Degradation of Magnesium Phosphate- and Magnesium Oxychloride-Based Bone Substitute Materials / Synthese, Charakterisierung und Degradation magnesiumphosphat- und magnesiumoxychloridbasierter Knochenersatzmaterialien

Kaiser, Friederike January 2024 (has links) (PDF)
Six different magnesium-containing mineral bone cement formulations (based on struvite, K-struvite, dittmarite, newberyite, magnesium oxychloride or an amorphous magnesium phosphate cement) were developed in the present thesis with the aim to improve material degradability, particularly in comparison to clinically established hydroxyapatite (HA) cements. Ideally, a rapid degradation supports simultaneous new bone formation and enables a full replacement of the implanted material by newly formed bone within several months. All compositions were characterized and optimized in vitro regarding handling, mechanical stability, and phase composition. Additionally, porosity and passive degradation was investigated. Four formulations (struvite, K-struvite, newberyite, magnesium oxychloride) exhibited a higher in vitro weight loss (1%, 8%, 1%, 37%) and cumulative ion release after 18 days in phosphate buffered saline (Mg: 10 µmol, 7 µmol, 12 µmol, 67 µmol) compared to the HA control cement (-0.4%, Ca: 0.5 µmol), indicating a higher passive solubility. HA is mainly resorbed by osteoclasts in vivo, which limits the resorption to the cement surface and results in a very slow degradation in vivo. Only for the amorphous magnesium phosphate cement, which is based on trimagnesium phosphate and sodium hydrogen phosphate, no weight loss during storage in PBS and a similarly low ion release compared to HA was observed. The in vitro degradation of the prefabricated dittmarite cement was not investigated, because it is expected to be similar to struvite-forming cements, due to the chemical resemblance of the two minerals. The most promising cement compositions (struvite, K-struvite, newberyite and dittmarite) were implanted in an established ovine bone defect model by our cooperation partners and degradation and new bone formation were quantified histomorphometrically. The cement area reduction 4 months after implantation was for all compositions (25%, 63%, 18%, 37%) noticeably higher compared to the HA reference cement (<5%), which had been already implanted in the very same defect model in a predecessor study. Furthermore, all compositions demonstrated a high biocompatibility and the degraded material was replaced by new bone. The prefabricated dittmarite cement, which allows the storage of the viscous paste and a direct application during surgery, proved to be the most promising cement composition, with an observed in vivo cement area reduction of 37% at 4 months after implantation (control HA: <5%). By using a trimodal particle size distribution, including diammonium hydrogen phosphate and trimagnesium phosphate with two different particle sizes, the injection force was reduced from 72 to 25 N. The high porosity of the set cement (52%) likely promoted the rapid degradation, but also decreased the compressive strength to 9-14 MPa. By contrast, the non-prefabricated struvite cement, exhibiting 12% porosity, reached a compressive strength of 36 MPa. For future clinical use, the storage stability would be important to address, because an increase of injection force from 25 N to 113 N was observed after a storage time of 4 weeks, caused by a strong viscosity increase. Apart from bone cement formulations, granules are a commonly used application form of bone replacement materials, particularly in maxillofacial surgery. Here, three different magnesium-mineral based granules (struvite, K-struvite, farringtonite) were fabricated with an emulsion process and compared to the clinically established material ß-TCP. For farringtonite and ß-TCP, new process routes for the granule fabrication were developed. Thereby, farringtonite and ß-TCP contents of 97% and 90%, respectively, were achieved. After the in vivo implantation in drill hole bone defects in a sheep model, also conducted by our cooperation partners, struvite granules exhibited a similar, and farringtonite granules a slightly improved degradation and new bone formation compared to ß-TCP granules. The remaining granule area after 4 months was 29%, 18% and 30% for struvite, farringtonite and ß-TCP, respectively. Only the K-struvite granules degraded too rapidly, with a relative granule area of 2% at 4 months after implantation. In conclusion, particularly magnesium ammonium phosphate cement pastes (struvite, dittmarite) appear to be a very promising advancement of mineral bone cements, enabling a rapid resorption of the material in vivo and replacement by newly formed bone. / In der vorliegenden Arbeit wurden sechs verschiedene magnesiumhaltige mineralische Knochenzementformulierungen (basierend auf Struvit, K-Struvit, Dittmarit, Newberyit, Magnesiumoxychlorid oder einem amorphen Magnesiumphosphatzement) mit dem Ziel entwickelt, die Materialabbaubarkeit insbesondere im Vergleich zu klinisch etablierten Hydroxylapatit (HA)-Zementen zu verbessern. Im Idealfall wird durch eine beschleunigte Degradation gleichzeitig die Knochenneubildung unterstützt und ein vollständiger Ersatz des implantierten Materials durch neu gebildeten Knochen innerhalb mehrerer Monate ermöglicht. Alle Formulierungen wurden in vitro hinsichtlich Handhabung, mechanischer Stabilität und Phasenzusammensetzung charakterisiert und optimiert. Außerdem wurden die Porosität und die passive Degradation untersucht. Bei vier Zementen (Struvit, K-Struvit, Newberyit, Magnesiumoxychlorid) war der in vitro gemessene Gewichtsverlust (1 %, 8 %, 1 %, 37 %) und die kumulierte Ionenfreisetzung in PBS (Mg: 10 µmol, 7 µmol, 12 µmol, 67 µmol) im Vergleich zum HA-Kontrollzement (-0.4%, Ca: 0.5 µmol) deutlich höher, was auf eine höhere passive Löslichkeit hinweist. HA wird in vivo hauptsächlich von Osteoklasten resorbiert, sodass die Degradation auf die Zementoberfläche beschränkt ist und zu einem sehr langsamen Abbau des Materials in vivo führt. Nur für den amorphen Magnesiumphosphatzement, der auf Trimagnesiumphosphat und Natriumhydrogenphosphat basiert, wurde kein Gewichtsverlust während der Lagerung in PBS und eine ähnlich geringe Ionenfreisetzung im Vergleich zu HA beobachtet. Der In-vitro-Abbau des vorgefertigten Dittmarit-Zements wurde nicht untersucht, da aufgrund der chemischen Ähnlichkeit ein ähnliches Verhalten wie bei den struvitbildenden Zementen zu erwarten ist. Die vielversprechendsten Zementzusammensetzungen (Struvit, K-Struvit, Newberyit und Dittmarit) wurden von unseren Kooperationspartnern in ein etabliertes Knochendefektmodell im Schaf implantiert und Abbau und Knochenneubildung histomorphometrisch quantifiziert. Die Zementflächenreduktion 4 Monate nach der Implantation war bei allen Zusammensetzungen (25 %, 63 %, 18 %, 37 %) deutlich höher im Vergleich zum HA-Referenzzement (<5 %), der in einer Vorgängerstudie im gleichen Defektmodell untersucht worden war. Darüber hinaus zeigten alle Zusammensetzungen eine hohe Biokompatibilität und das degradierte Material wurde durch neuen Knochen ersetzt. Der vorgefertigte Dittmarit-Zement, der die Lagerung der viskosen Paste und eine direkte Applikation ohne vorheriges Anmischen während der Operation ermöglicht, erwies sich als die vielversprechendste Zusammensetzung, mit einer in vivo beobachteten Reduzierung der Zementfläche um 37 % vier Monate nach Implantation (Kontroll-HA-Zement: <5 %). Durch die Verwendung einer trimodalen Partikelgrößenverteilung, einschließlich Diammoniumhydrogenphosphat und Trimagnesiumphosphat mit zwei verschiedenen Partikelgrößen, wurde die Injektionskraft von 72 auf 25 N reduziert. Die hohe Porosität des ausgehärteten Zements (52 %) begünstigte wahrscheinlich die schnelle Degradation, verringerte aber auch die Druckfestigkeit auf 9-14 MPa. Der nicht vorgefertigte Struvit-Zement, der eine Porosität von 12 % aufwies, erreichte dagegen eine Druckfestigkeit von 36 MPa. Für eine zukünftige klinische Anwendung wäre es essenziell die Lagerungsstabilität zu verbessern, da nach einer Lagerungszeit von 4 Wochen ein Anstieg der Injektionskraft von 25 N auf 113 N gemessen wurde, was auf einen starken Viskositätsanstieg der Paste zurückzuführen ist. Neben Knochenzementformulierungen sind Granulate eine häufig verwendete Applikationsform von Knochenersatzmaterialien, insbesondere in der Kieferchirurgie. Hier wurden drei unterschiedliche mineralische, magnesiumhaltige Granulate mittels Emulsionsverfahren hergestellt (Struvit, K-Struvit, Farringtonit) und mit dem klinischen Standardmaterial ß-TCP verglichen. Für Farringtonit und ß-TCP wurden neue Prozessrouten zur Granulatherstellung entwickelt. Dabei wurden Farringtonit- und ß-TCP-Gehalte von 97 % bzw. 90 % erreicht. Nach der in vivo Implantation der Materialien in Knochen-Bohrlochdefekte im Schafsmodell, die ebenfalls von unseren Kooperationspartnern durchgeführt wurde, zeigte das Struvit-Granulat eine ähnliche und das Farringtonit-Granulat eine leicht verbesserte Degradation und Knochenneubildung im Vergleich zum ß-TCP-Granulat. Die verbleibende Granulatfläche nach 4 Monaten betrug 29 %, 18 % bzw. 30 % für Struvit, Farringtonit und ß-TCP. Nur das K-Struvit-Granulat wurde zu schnell abgebaut, mit einer relativen Granulatfläche von 2 % nach 4 Monaten Implantationszeit. Zusammenfassend lässt sich sagen, dass insbesondere Magnesium-Ammonium-Phosphat-Zementpasten (Struvit, Dittmarit) eine vielversprechende Weiterentwicklung von mineralischen Knochenzementen darstellen, die eine schnelle Resorption des Materials in vivo und den Ersatz durch neu gebildeten Knochen ermöglichen.
3

Rapid-Prototyping hydraulisch härtender Calcium- und Magnesiumphosphatzemente mit lokaler Wirkstoffmodifikation / Rapid-prototyping of hydraulic calcium- and magnesium phosphate cements with local drug modification

Vorndran, Elke January 2011 (has links) (PDF)
Ziel dieser Arbeit war die Herstellung individuell formbarer Strukturen mittels des 3D-Pulverdrucks auf Basis von bei Raumtemperatur hydraulisch abbindenden Knochenzementpulvern. Neben der Entwicklung neuartiger Zementformulierungen auf Basis von Magnesiumphosphaten war vor allem die gleichzeitige Ausstattung der Werkstoffe mit temperaturlabilen und bioaktiven Verbindungen ein wichtiger Entwicklungsschritt. Die Lokalisation der Wirkstoffe korreliert dabei mit entsprechenden Farbinformationen im Design der Konstrukte, die durch einen Mehrfarbendrucker physikalisch abgebildet werden. Das auf Calciumphosphat basierende System hat den Nachteil, dass die Abbindereaktion bei stark sauren pH-Werten abläuft, was negative Auswirkungen auf die gleichzeitige Ausstattung mit sensitiven Wirkstoffen hat. Zur Lösung dieser Problematik wurde ein neues Knochenzementpulver auf Magnesiumphosphatbasis entwickelt, welches unter neutralen pH-Bedingungen mit ammoniumhaltigem Binder zu dem Mineral Struvit abbindet. Das Zementpulver aus Trimagnesiumphosphat wurde bezüglich der pulvertechnologischen Eigenschaften, wie Partikelgröße, Partikelgrößenverteilung, Glättungseigenschaften und Schüttdichte sowie hinsichtlich des Abbindeverhaltens charakterisiert und für den Druckprozess optimiert. Die hohe Strukturgenauigkeit ermöglichte die Darstellung von makroporösen Strukturen mit einem minimalen Porendurchmesser von ca. 200 µm. Gute mechanische Kennwerte der gedruckten Strukturen, sowie eine hohe Umsetzungsrate zur gewünschten Phase Struvit wurden durch eine Nachhärtung in Ammoniumphosphatlösung erhalten. Die Druckfestigkeit betrug > 20 MPa und der Phasenanteil von Struvit konnte auf insgesamt 54 % gesteigert werden. Die Darstellung von wirkstoffmodifizierten Calciumphosphat- und Magnesiumphosphatstrukturen durch Verwendung eines Mehrfarbendruckers wurde beginnend vom Design der Strukturen bis hin zur experimentellen Bestimmung der Korrelation von Farbinformation und Binderapplikation etabliert. Zur Sicherstellung einer hohen Druckqualität und der Ortsständigkeit gedruckter Wirkstoffe erwies sich eine zusätzliche Modifikation des Tricalciumphosphatpulvers mit quellfähigen Polymeren (Hydroxypropylmethyl-cellulose (HPMC) bzw. Chitosan) als erfolgreich. Eine maximale Auflösung von ca. 400 µm konnte für eine HPMC/Chitosan/Calciumphosphat-Variante erreicht werden, während das hochreaktive Magnesiumphosphat/Magnesiumoxid-System eine Auflösung von 480 µm aufwies. Die Ortsständigkeit eingebrachter Lösungen war Voraussetzung für die Steuerung der Freisetzungskinetik. Das Freisetzungsverhalten in vitro wurde in Abhängigkeit von der Wirkstofflokalisation (homogen, Depot, Gradient) innerhalb der Matrix und unter Einbringung zusätzlicher polymerer Diffusionsbarrieren für den Wirkstoff Vancomycin untersucht. Dabei zeigte sich, dass die Modifikation der Matrices mit Polymeren zu einer verzögerten Freisetzung führte. Die lokale Wirkstoffmodifikation der Matrices in Form eines Depots oder Gradienten hatte Einfluss auf die Freisetzungskinetik, wobei eine lineare Freisetzung mit der Zeit (Kinetik 0. Ordnung) erreicht werden konnte. Die applizierten Wirkstoffe umfassten sowohl niedermolekulare Verbindungen, wie etwa das Antibiotikum Vancomycin oder das Polysaccharid Heparin, als auch proteinbasierte Faktoren wie den Knochenwachstumsfaktor rhBMP-2. Beurteilt wurde die pharmakologische Wirksamkeit der Verbindungen nach dem Druck, sowie nach der Freisetzung aus einer Calciumphosphatmatrix für den Wirkstoff Vancomycin. Es konnte belegt werden, dass die biologische Aktivität nach dem Druckprozess zu über 80 % erhalten blieb. Limitierend war der stark saure pH-Wert bei bruschitbasierten Systemen, der zu einer Inaktivierung des Proteins führte. Diesem Problem könnte durch die Nutzung des neutral abbindenden Magnesiumphosphatsystems entgegengewirkt werden. Abschließend erfolgten eine mikrostrukturelle Charakterisierung der Calciumphosphat- und Magnesiumphosphatmatrices mittels µ-CT-Analyse und Heliumpyknometrie, sowie eine quantitative Phasenanalyse nach Rietveld. Experimentell konnte nachgewiesen werden, dass mit Hilfe des 3D-Pulverdruck die Darstellung von Makroporen > 200 µm möglich ist. Die Analyse der Phasenzusammensetzung ergab, dass die Umsetzungsrate von Tricalciumphosphat und Trimagnesiumphosphat zu den gewünschten Phasen Bruschit und Struvit infolge des Nachhärtungsprozesses signifikant gesteigert werden konnte. Im Zuge dessen nahm die Porosität der gedruckten Matrices der Phase Struvit von 58 % auf 26 % und der Phase Bruschit von 47 % auf 38 % ab. / Aim of this study was the room temperature fabrication of individually formed structures via 3D-powder printing based on hydraulic bone cements. In addition to the development of a novel cement formulation composed of magnesium phosphate, the simultaneous modification of matrices during the printing process with temperature sensitive and bioactive drugs was an important part of the work. The drug localization within the matrices is hereby correlated with an analogous colour design of the structures, which is physically reproduced by the multi-colour-printer. The calcium phosphate based system has the disadvantage of a strongly acidic setting reaction, which has negative effects on the simultaneous modification with sensitive bioactive agents. To solve this problem a novel bone cement formulation based on magnesium phosphate was established. This cement reacts with ammonium based binder solution within seconds to form the mineral struvite at neutral pH. The technological properties of the of trimagnesium phosphate cement powder, including particle size, particle size distribution, spreadability, powder density, and the setting behaviour, were characterized and optimized for the printing process. The high structural accuracy enabled the production of macroporous structures with a minimal pore diameter of approximately 200 µm. Proper mechanical characteristics of the printed structures as well as a high degree of conversion to the struvite phase were achieved by post-hardening in ammonium phosphate solution. The compressive strength could be increased to more than 20 MPa and the phase fraction of struvite could be increased to a maximum value of a total of 54 %. The fabrication of drug loaded calcium phosphate and magnesium phosphate scaffolds using a multi-colour-printer was established, beginning with the structure design and following the experimental verification of the correlation between the colour information and the applied binder. To guarantee a high accuracy of printing and the localization of the printed drugs, a supplemental modification of the tricalcium phosphate powder with swellable polymers (hydroxypropylmethylcellulose (HPMC) or chitosan) was successful. A maximum resolution of about 400 µm was achieved by an HPMC/chitosan/calcium phosphate composition, whereas the highly reactive magnesium phosphate/magnesium oxide system showed a resolution of about 480 µm. The localization of the applied solutions was a prerequisite to control the release kinetics of the drugs. The release kinetic of vancomycin was investigated in vitro depending on the drug localization (homogeneous, depot, gradient-like) within the matrix and by adding additional polymeric diffusion barriers. It could be shown that the polymeric modification of the matrices resulted in a delayed drug release. By discrete and depot-like or graded drug distributions within the matrices the release kinetic could be controlled, achieving a linear release with time (zero order release). The administered agents involved both low molecular compounds like the antibiotic vancomycin or the polysaccharide heparin and protein based factors like bone morphogenic factor rhBMP-2. Evaluation of pharmacological activity of the agents after printing as well as after release of vancomycin from a calcium phosphate matrix was determined, indicating that the bulk biological activity of more than 80 % was retained during the printing process. The limiting factor of the brushite based system was the strong acidic pH, which resulted in an inactivation of protein-based bioactives. This problem may be solved by using neutrally setting magnesium phosphate systems. Finally a microstructural characterization of calcium phosphate and magnesium phosphate matrices by µ-CT analysis and helium pycnometry as well as a quantitative phase analysis by Rietveld was performed. It was demonstrated, that 3D-printing allows the manufacturing of macro pores > 200 µm. The analysis of phase composition showed a significant increase of the degree of conversion from tricalcium phosphate or trimagnesium phosphate to the phases brushite or struvite due to the post hardening process. Hence the porosity of the printed matrices decreased from 58 % to 26 % for struvite and from 47 % to 38 % for brushite.
4

Systematische Analyse der Abbindereaktion von Magnesiumphosphat mit Polyacrylsäure im Vergleich zu klassischen wässrigen Zementsystemen / Systematic analysis of the setting reaction of magnesium phosphate with poly(acrylic acid) in comparison to classic aqueous cement systems

Stengele, Anja January 2017 (has links) (PDF)
Gegenstand der vorliegenden Arbeit war eine systematische Analyse der Ver-arbeitbarkeit, Abbindedauer, pH Wert- und Temperatur-Verläufe während des Abbindens und der Eigenschaften der ausgehärteten Zementpaste, welche je-weils aus Farringtonit (Mg3(PO4)2) unterschiedlicher Reaktivität bestand und mit Diammoniumhydrogenphosphat und Polyacrylsäure zur Reaktion gebracht und konventionellen wässrigen Zementsystemen gegenübergestellt wurde. Ein besonderer Fokus wurde hierbei auf die Beurteilbarkeit der Eignung dieser Zementsysteme als injizierbare Zementpasten in möglicherweise lasttragenden Bereichen gelegt. Eine Reaktivierung von Farringtonit und anschließendes Ab-binden mit Wasser konnte durch Hochenergiemahlung für 2 h bis 24 h erzielt werden. Mechanisch aktiviertes Farringtonit mit Polyacrylsäure (100.000 g/mol) bzw. kurzzeitig gemahlenes Farringtonit mit höher molekulargewichtiger Polyac-rylsäure führte auf Grund der zum Teil summierten Reaktivität in der sauren Umgebung der Polyacrylsäure zu einer schlechten Verarbeitbarkeit und unzu-reichenden Druckfestigkeiten. Um chelatisiertes Farringtonit mit angemessenen Festigkeiten zu erhalten, zeigte sich die Anwesenheit von Ammoniumionen als vielversprechende Strategie. Als hydratisierte Produkte wurden je nach Formu-lierung Struvit (MgNH4PO4·6H2O), Newberyit (MgHPO4·3H2O) oder Mag-nesiumphosphathydrat (Mg3(PO4)2·22H2O) gewonnen. Besonders die Kombina-tion von kurzzeitig gemahlenem Farringtonit mit 17,5 Gew.%iger Poly-acrylsäure Lösung und 23,1 Gew.%iger Diammoniumhydrogenphos-phat Lösung mit einem Pulver-zu-Flüssigkeitsverhältnis von 1,5 g/ml führte zu Zementpasten, die hinsichtlich ihres Abbindeverhaltens und der mechanischen Eigenschaften denen der Einzelbestandteile überlegen waren. Die entwickelten Zementsysteme zeigten 60 min nach Beginn des Abbindevor-gangs einen pH-Wert von 4,7 bis 6,4 und Temperaturmaxima von 28,5 °C bis 52 °C je nach Zusammensetzung. Der Mischzement, für welchen maximale Druckfestigkeiten von 15,0±4,1 MPa gemessen wurden, zeigte ein deutlich we-niger sprödes Bruchverhalten im Vergleich zu den reinen Verdünnungen. Da der spröde Charakter klassischer mineralische Knochenzemente einen limitie-renden Faktor für die Anwendung in lasttragenden Bereichen darstellt, kann dies als deutliche Verbesserung der mechanischen Eigenschaften beurteilt wer-den. Immerhin lagen die erzielten Festigkeitswerte in der Größenordnung der humanen Spongiosa. Besonders hervorzuheben ist außerdem der synergisti-sche Effekt, welcher bei Zementformulierungen aus kurzzeitig gemahlenem Farringtonit mit 17,5 Gew.%iger Polyacrylsäure Lösung und 23,1 Gew.%iger Diammoniumhydrogenphosphat Lösung mit einem Pulver-zu-Flüssigkeitsver-hältnis von 1,5 g/ml beobachtet werden konnte. Diese Formulierung wies bis zu vierfach höhere Festigkeitswerte als die Einzelbestandteile auf. Somit bildet das entwickelte Mischzement-System eine gute Basis für weitere Entwicklungen hin zu mechanisch lasttragenden Defekten. / In the present thesis, trimagnesium phosphate (Mg3(PO4)2 , farringtonite) of various reactivity was mixed with diammonium hydrogen phosphate and poly(acrylic acid) and systematically analyzed. The object was to compare these cement systems to conventional aqueous cement formulations regarding setting time, workability, pH-value and temperature during setting, as well as the mechanical characteristics of the set cement paste. In doing so, a special focus was on the assessment of these cement systems in terms of their suitability as injectable cement pastes in potentially load-bearing bone defect sites. The high energy ball milling of farringtonite for 2 h to up to 24 h led to an increased reactivity which enabled the mechanically activated farringtonite to react in the presence of water and form a cementitious matrix of highly hydrated magnesium phosphate mineral. Due to the accumulated reactivity of the mechanically activated farringtonite in the acidic environment of poly(acrylic acid) (100,000 g/mol), the corresponding processability and compressive strength were not suitable for application. The same result was observed for non-activated farringtonite and poly(acrylic acid) of a higher molecular weight. A promising strategy in order to form a hardened ceramic matrix with adequate mechanical performance was the incorporation of ammonium ions in form of diammonium hydrogen phosphate. Depending on the educts used, the different formulations resulted in hydrated products such as struvite (MgNH4PO4·6H2O), newberyite (MgHPO4·3H2O) and magnesium phosphate hydrate (Mg3(PO4)2·22H2O). Mixing short-term ground farringtonite with 23.1 wt.% diammonium hydrogen phosphate and 17.5 wt.% poly(acrylic acid) (100,000 g/mol) in a powder-to-liquid ratio of 1.5 g/mL, led to a cement system with altered setting behavior and up to 4-fold synergistically improved mechanical behavior compared to the single components. After 60 min of setting, the cement exhibited a pH-value of 4.7 to 6.4 and a temperature maximum of 28.5 °C to 52 °C, which depended on the exact composition. For the mixed cement formulation, a decrease in brittleness and an increase in compressive strength with up to 15.0±4.1 MPa could be observed. Currently, the brittle nature of mineral bone cements restricts their use to non-load-bearing defect sites. Therefore, the as-observed reduction in brittleness can be considered as a remarkable improvement of the fracture mechanics. At least, the compressive strength was similar to the compressive strength of human cancellous bone, such that, in conclusion, the developed cement system represents a promising basis for further investigations, possibly toward load-bearing applications.
5

Untersuchung des in vivo Einwachsverhaltens von Zementgranulaten und -pasten aus resorbierbaren Calcium-dotierten Magnesiumphosphat-Phasen / Investigating the in vivo ingrowth behavior of cement granules and pastes from resorbable calcium-doped magnesium phosphate phases

Kreczy, Dorothea January 2020 (has links) (PDF)
In der vorliegenden Arbeit wurden unterschiedliche zementbasierte Knochenersatzmaterialien hinsichtlich ihres Potentials zur Behandlung knöcherner Defekte in vivo untersucht. Zwei verschiedene Calcium-dotierten Magnesiumphosphat Zementformulierungen (CMPC) wurden mit einem Referenzmaterial aus Calciumphosphat Zement (CPC) verglichen. Dazu wurden auf Basis von CMPC präfabrizierte, injizierbare Pasten bzw. sphärische Granulate hergestellt und anhand von orthotopen, potenziell kraftbelasteten Defekten in Kaninchenfemora getestet. Zentrales Ziel hierbei war es, herauszufinden, wie sich die Materialien in Defektsituationen mit Hartgewebekontakt biologisch verhalten und degradieren bzw. in Knochen umbauen. Nach einer Liegedauer von 6 bzw. 12 Wochen wurden die Knochenneubildung und die Degradation der Materialien mittels Histomorphometrie analysiert. Alle Materialien waren biokompatibel und führten zur Bildung von neuem Knochen. Der CMPC-Zement zeigte im Vergleich zu CPC einen beschleunigten Abbau, während sich am Referenzmaterial mehr mineralisierter Knochen bildete. Die untersuchten Calcium-dotierten Struvit-bildenden Magnesiumphosphatzemente erwiesen sich als biokompatibel, gut resorbierbar und stellen mit ihrer Fähigkeit zur Knochenbildung ein vielversprechendes Knochenersatzmaterial dar. / Two different bone replacement materials where tested for their in vivo bone regeneration capacity. Two different calcium-magnesia-phosphate cement (CMPC) formulations in form of premixed, injectable oil-based cement paste and granulates and a reference calcium-phosphate cement (CPC) cement were implanted into semi-load bearing femoral drill hole in rabbits. After 6 or 12 weeks the implants were retrieved, and cement degradation and new bone formation was analyzed by histomorphometry. The result showed that all cements where biocompatible, triggered the formation of and were surrounded by new bone. The CMPC cement showed an accelerated degradation compared to CPC, while more new bone was built on the CPC materials. The calcium-doped magnesium phosphate cement materials exhibited regeneration of the host bone and demonstrated enhanced degradability in vivo, which makes them a promising bone replacement material.
6

Neue adhäsive mineral-organische Knochenzemente auf Basis von Phosphoserin und Magnesiumphosphaten bzw. -oxiden / Novel adhesive mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides

Renner, Tobias January 2023 (has links) (PDF)
Heutige chirurgische Situationen können zeitweise den Einsatz eines Knochenkleber erfordern, welcher sich jedoch noch nicht in der klinischen Praxis etablieren konnte. In jüngster Vergangenheit haben mit Phosphoserin modifizierte Zemente (PMC) auf der Grundlage von Verbindungen zwischen o-Phosphoserin (OPLS) und Calciumphosphaten wie Tetracalciumphosphat (TTCP) oder α-Tricalciumphosphat (α-TCP) an Popularität gewonnen. Ebenso bekommen chelatbildende Magnesiumphosphatzemente als mineralische Knochenadhäsive mehr Zuspruch. In dieser Arbeit wurden neue mineralorganische Knochenzemente auf der Basis von Phosphoserin und Magnesiumphosphaten oder -oxiden untersucht, die hervorragende Hafteigenschaften besitzen. Diese wurden mittels Röntgenbeugung, Fourier-Infrarot-Spektroskopie und Elektronenmikroskopie analysiert und mechanischen Tests unterzogen, um die Haftfestigkeit am Knochen nach Alterung unter physiologischen Bedingungen zu bestimmen. Die neuartigen biomineralischen Klebstoffe zeigen eine ausgezeichnete Haftfestigkeit an Knochen mit etwa 6,6-7,3 MPa unter Scherbelastung. Die Adhäsive sind auch aufgrund ihres kohäsiven Versagensmusters und ihres duktilen Charakters vielversprechend. In diesem Zusammenhang sind die neuen adhäsiven Zemente den derzeit vorherrschenden Knochenadhäsiven überlegen. Ergänzend wurde versucht, dieses neue System mit unterschiedlichen Additiven zu modifizieren. Dabei wurde Mannit erfolgreich als Porogen verwendet. Dreiarmiges sternförmiges NCO-sP(EO-stat-PO) sollte die adhäsiven Eigenschaften und das Leistungspotenzial unter Wasser verbessern. Zuletzt wurden mit Glycerol präfabrizierte Pasten hergestellt, welche gelagert werden können und bei Kontakt mit Wasser aushärten. Generell ist zu betonen, dass künftige Bemühungen um Knochenklebstoffe aus Phosphoserin und Mg2+ sehr lohnenswert erscheinen. / Present surgical situations require a bone adhesive which has not yet been developed for use in clinical applications. Recently, phosphoserine modified cements (PMC) based on mixtures of o-phosphoserine (OPLS) and calcium phosphates, such as tetracalcium phosphate (TTCP) or α-tricalcium phosphate (α-TCP) as well as chelate setting magnesium phosphate cements have gained increasing popularity for their use as mineral bone adhesives. Here, we investigated new mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides, which possess excellent adhesive properties. These were analyzed by X-ray diffraction, Fourier infrared spectroscopy and electron microscopy and subjected to mechanical tests to determine the bond strength to bone after ageing at physiological conditions. The novel biomineral adhesives demonstrate excellent bond strength to bone with approximately 6.6–7.3 MPa under shear load. The adhesives are also promising due to their cohesive failure pattern and ductile character. In this context, the new adhesive cements are superior to currently prevailing bone adhesives. In addition, an attempt was made to modify this new system with different additives. Mannite was successfully used as a porogen. Three-armed star-shaped NCO-sP(EO-stat-PO) should improve the adhesive properties and performance potential under water. Last glycerol-prefabricated pastes were prepared, which could be stored and cure upon contact with water. In general, it should be emphasized that future efforts on bone adhesives from phosphoserine and Mg2+ seem very worthwhile.
7

Zelluläre Resorption 3D-gedruckter Knochenimplantate auf Basis von Calciummagnesiumphosphaten / Cellular resorption of 3D-printed bone implants based on calcium magnesium phosphates

Gefel, Eugen January 2023 (has links) (PDF)
Für die Behandlung von Knochendefekten kritischer Größe gibt es heute eine Reihe von Therapiemöglichkeiten. Neuartige Ansätze mit Magnesiumphosphat- (MPC) und Calciummagnesiumphosphatzementen (CMPC) haben sich als echte Alternativen zu den etablierten Calciumphosphaten erwiesen. Ziel war es, die Osteoklastogenese in vitro auf 3D-pulvergedrucktem CMPC und MPC zu induzieren und die zelluläre Resorption (zR) zu analysieren. Polystyrol (PS), Glas, β-TCP und Brushit-bildender Zement dienten als Referenzen. Als Proben wurden Zemente der allgemeinen stöchiometrischen Summenformel CaxMg(3–x)(PO4)2 (x = 0; 0,25; 0,75; 3) verwendet, die Struvit oder Newberyit enthielten. Für die Osteoklastogenese wurden monozytenangereicherte PBMCs aus Buffy-Coat mittels dreifacher Dichtegradientenzentrifugation isoliert, auf die Prüfoberflächen ausgesät und über einen Zeitraum von 22 Tagen mit Zytokinen (M-CSF und RANKL) stimuliert. Die Interaktion der Zellen mit den Zementen bzw. PS/Glas wurde mittels TRAP-Färbung und -Aktivität, DNA- und Ionenkonzentrationen (Ca2+, Mg2+, PO43–, pH-Wert), Rasterelektronen-, Durchlicht-, Auflicht- und Fluoreszenzmikroskopie analysiert. Auf den Struvit- und Newberyit-bildenden Zementen konnten keine für Osteoklasten typischen Riesenzellen nachgewiesen werden. Auf den Struvit-bildenden Zementen wurde deutlich mehr mononukleäre Zellen nachgewiesen wurden als auf den Newberyit-bildenden Zementen. Während die Freisetzung von Mg2+ und PO43– ausschließlich durch die chemische Degradation erfolgte, wurde Ca2+ zunächst adsorbiert und anschließend durch zR freigesetzt. Die erhöhte Ca2+-Adsorption im Vergleich zur Ca2+-Resorption führte insgesamt zu einer Calcium-Präzipitation. Da lediglich auf β-TCP Resorptionslakunen beobachtet wurden, wird angenommen, dass auf den CMPC, MPC und Brushite-bildenden Zementen die zellvermittelte Ca2+-Freisetzung von den Präzipitaten ausging, die von Makrophagen auf den Zementen und/oder Riesenzellen auf den Wellplatten resorbiert wurden. / There are a number of therapeutic options available today for the treatment of critical size bone defects. Novel approaches using magnesium phosphate (MPC) and calcium magnesium phosphate cements (CMPC) have proven to be real alternatives to the established calcium phosphates. The aim was to induce osteoclastogenesis in vitro on 3D powder-printed CMPC and MPC and to analyse cellular resorption (zR). Polystyrene (PS), glass, β-TCP and brushite-forming cement served as references. Cements of the general stoichiometric molecular formula CaxMg(3-x)(PO4)2 (x = 0; 0.25; 0.75; 3) containing struvite or newberyite were used as samples. For osteoclastogenesis, monocyte-enriched PBMCs were isolated from buffy coat by triple density gradient centrifugation, seeded onto the test surfaces and stimulated with cytokines (M-CSF and RANKL) over a period of 22 days. The interaction of the cells with the cements or PS/glass was analysed by TRAP staining and activity, DNA and ion concentrations (Ca2+, Mg2+, PO43-, pH), SEM, transmitted light, reflected light and fluorescence microscopy. No giant cells typical of osteoclasts could be detected on the struvite- and newberyite-forming cements. On the struvite-forming cements, significantly more mononuclear cells were detected than on the newberyite-forming cements. While the release of Mg2+ and PO43- was exclusively by chemical degradation, Ca2+ was first adsorbed and then released by zR. The increased Ca2+ adsorption compared to Ca2+ resorption led to calcium precipitation overall. Since resorption lacunae were only observed on β-TCP, it is assumed that on the CMPC, MPC and Brushite-forming cements, the cell-mediated Ca2+ release originated from the precipitates resorbed by macrophages on the cements and/or giant cells on the well plates.
8

Experimentelle biomechanische Analyse von unterschiedlichen Knochenzementen bei der in-situ-Implantataugmentation / Experimental biomechanical analysis of different bone cements for in situ implant augmentation

Heilig, Maximilian January 2024 (has links) (PDF)
Für den Funktionserhalt nach einer Fragilitätsfraktur ist eine stabile Osteosynthese, welche eine frühfunktionelle Nachbehandlung zur Vermeidung längerer Immobilität erlaubt, mit suffizienter Reposition essenziell. Die stabile Osteosynthese kann in osteoporotischem Knochen jedoch durch dessen schwache biomechanische Eigenschaften limitiert sein. Indem die in-situ-Implantataugmentation mit Knochenzement die Belastbarkeit des Knochens in Implantatnähe verbessert, kann auch in osteoporotischem Knochen eine stabile Osteosynthese erreicht werden. Ziel dieser Studie war es, eine vielversprechende Formulierung eines Magnesiumphosphatzementes so weiterzuentwickeln, dass deren Anwendung bei der in-situ-Implantataugmentation möglich wurde. In einem zweiten Schritt sollte die Formulierung gegenüber kommerziell erhältlichen Knochenzementen durch die Materialprüfung im Druckversuch und mithilfe eines biomechanischen Testmodells evaluiert werden. Die Vorversuche offenbarten die Nachteile der konventionellen, wasserbasierten Magnesiumphosphatzementformulierung bei der in-situ-Implantataugmentation: „Filter Pressing“ und eine unpassende Viskosität limitierten die Anwendung. Erst die Formulierung als vorgemischte Magnesiumphosphat-Paste mit Propan-1,2,3,-triol als Bindemittel verbesserte die Injizierbarkeit und ermöglichte eine verlässliche in-situ- Implantataugmentation. Bei der Zementevaluation zeigte Traumacem™ V+ als PMMA-Zement die höchste Kompressionsfestigkeit im Druckversuch, die höchste Rotationsstabilität in der Torsionsprüfung und eine sehr gute Injizierbarkeit. Paste-CPC und MgPO-Paste zeigten sich in Druckversuch und Torsionsprüfung untereinander vergleichbar, wobei die MgPO-Paste tendenziell eine initial höhere Stabilität aufweist. Für den Parameter Normalisiertes Drehmoment zeigten alle Zementgruppen einen statistisch signifikanten Unterschied zur Kontrollgruppe, was den stabilitätssteigernden Effekt aller verwendeten Knochenzemente demonstriert. Es konnte kein Effekt der in-situ-Implantataugmentation auf Phimax, also auf den, bis zum maximalen Drehmoment gefahrenen Winkel, gefunden werden. Die Korrelation zwischen Drehmoment und Knochendichte zeigte den Zusammenhang zwischen Rotationsstabilität und Knochendichte für die Kontrollgruppe, welcher jedoch bei Zementaugmentation mit Traumacem™ V+ und MgPO-Paste verschwand. Zusammengefasst wurde in dieser Studie erstmals eine biologisch vorteilhafte MgPO- Paste für den Einsatz bei der in-situ-Implantataugmentation entwickelt und verwendet. Weiter konnte der stabilitätssteigernde Effekt der Zementaugmentation mit dieser MgPO-Paste, sowie mit den Knochenzementen Traumacem™ V+ und Paste-CPC, für TFNA-Schenkelhalsklingen im isolierten Femurkopf-Modell gezeigt werden. Der Einsatz der MgPO-Paste bei der in-situ-Implantataugmentation bedarf bis zur eventuellen Marktreife einer Verbesserung der Injizierbarkeit sowie der Evaluation in klinischen Studien. / A stable osteosynthesis with sufficient reduction is essential to achieve a good outcome in patients suffering a fragility fracture. However, the stability of the osteosynthesis may be limited in osteoporotic bone by its weak biomechanical properties. In situ implant augmentation with bone cement can help to achieve a sufficient osteosynthesis even in osteoporotic bone by improving the load-bearing capacity of the bone near the implant. The aim of this study was to further develop a promising formulation of a magnesium phosphate cement for in situ implant augmentation. Secondly, the formulation was to be evaluated against commercially available bone cements by material testing in compression and by using a biomechanical test model. The preliminary tests revealed the disadvantages of the conventional, water-based magnesium phosphate cement: filter pressing and an unsuitable viscosity limited its application. Only the formulation as a premixed magnesium phosphate paste with propane-1,2,3,-triol as a binding agent showed improved injectability and enabled reliable in situ implant augmentation. In cement evaluation, Traumacem™ V+ as PMMA cement showed the highest compressive strength in compression test, the highest rotational stability in torsion test and very good injectability. Paste-CPC and MgPO paste showed comparable performance to each other in compression and torsion test, with MgPO paste tending to show initially a higher stability. For the parameter “normalized torque”, all cement groups showed a statistically significant difference from the control group, demonstrating the effect of cement augmentation for all bone cements. No effect of in situ implant augmentation on Phi max , the angle driven to the maximum torque, could be found. The correlation between torque and bone mineral density showed the relationship between rotational stability and bone mineral density for the control group, but this correlation disappeared when cement augmentation with Traumacem™ V+ or MgPO paste was performed. In summary, this study was the first to develop and use a biologically beneficial MgPO paste for in situ implant augmentation. Further, the effect of cement augmentation with this MgPO paste, as well as with Traumacem™ V+ and Paste- CPC, was demonstrated for TFNA femoral neck blades in an isolated femoral head model. Before becoming commercially available, the use of MgPO paste for in situ implant augmentation may require improved injectability and evaluation in clinical studies.
9

Modifikation von Titanoberflächen mittels elektrochemischer Abscheidung von Magnesiumphosphaten

Wenninger, Florian January 2013 (has links) (PDF)
In der vorliegenden Arbeit ist es gelungen, die experimentellen Parameter für eine erfolgreiche elektrochemische Abscheidung sowohl von Struvit (MgNH4PO4 • 6H2O) als auch Newberyit (MgHPO4 • 3H2O) auf durch Sandstrahlen aufgeraute Titanproben zu ermitteln. Welche der beiden Phasen auf den Titanoberflächen abgeschieden wurde, hing dabei hauptsächlich von der jeweiligen Elektrolytzusammensetzung ab. Bei der Elektrodeposition selbst erwiesen sich eine Elektrolyttemperatur von 50 °C und Stromdichten von etwa 79 – 105 mA/cm2 als optimal, um geschlossene Schichten von hinreichender Dicke reproduzierbar herzustellen. Es zeigte sich, dass die für die jeweiligen Abscheidungsprodukte optimierten Parameter (79 mA/cm2 für Struvit und 105,3 mA/cm2 für Newberyit) zu deutlich unterschiedlichen Massenabscheidungen (4,4 mg/cm2 für Struvit und 0,6 mg/cm2 für Newberyit bei einer Beschichtungsdauer von 15 min) führten. Das Monohydrat Dittmarit (MgNH4PO4 • H2O) ließ sich nicht direkt abscheiden, konnte aber durch Dampfsterilisation von zuvor erzeugten Struvitschichten in einem Autoklaven erzeugt werden. Um das Verhalten der Oberflächenmodifikationen in einer in-vivo-Umgebung zu simulieren, wurden die Beschichtungen für eine maximale Dauer von 14 Tagen in Simulated Body Fluid (SBF), Dulbecco's Modified Eagle Medium (DMEM) und in fötalem Kälberserum (FCS) eingelagert. In bestimmten Zeitabständen wurden eingelagerte Proben ihrem Medium entnommen, getrocknet und die Schichten mit Hilfe der Röntgendiffraktometrie und der Rasterelektronen-mikroskopie hinsichtlich ihrer kristallographischen und morphologischen Eigenschaften charakterisiert. Dabei zeigten die drei Magnesiumphosphate jeweils unterschiedliches Degradationsverhalten in den verschiedenen Einlagerungsmedien. Struvit wandelte sich nach 14 Tagen in DMEM teilweise, in FCS größtenteils und in SBF vollständig zu Bobierrit (Mg3(PO4)2 • 8H2O) um. Ein ähnliches Verhalten zeigte sich bei Dittmarit, allerdings kam es hier in allen Medien zur Bildung einer weiteren Phase (Tri-Magnesium-Di-Phosphat-5-Hydrat, Mg3(PO4)2 • 5H2O), in FCS bildete sich zusätzlich noch Di-Magnesiumphosphathydroxid-4-Hydrat (Mg2PO4OH • 4H2O). Die Newberyit-Schichten hingegen zeigten keinerlei Phasenumwandlungen, lösten sich aber in den Einlagerungsversuchen teilweise auf. Diese Ergebnisse zeigen, dass elektrochemisch erzeugte Beschichtungen auf Magnesiumphosphatbasis durchaus vielversprechend im Hinblick auf die funktionelle Modifikation metallischer Implantatoberflächen sind. Neben den literaturbekannten positiven Eigenschaften der Magnesiumphosphate (gute Zytokompatibilität, hohe Löslichkeit und mechanische Festigkeit) ist für zukünftige Forschungen vor allem das in dieser Arbeit untersuchte Degradationsverhalten von Interesse. Die in fast allen untersuchten Kombinationen aus Schichtmodifikation und Einlagerungsmedium auftretenden Phasenumwandlungen weisen auf durch die physiologische Umgebung hervorgerufene Resorptionsprozesse hin, die wiederum in vivo die Osteointegration des Implantats unterstützen könnten. Ein weiterer Aspekt zukünftiger Untersuchungen ist die mögliche Beladung der biokompatiblen Schichten mit bioaktiven Substanzen (antibakterielle oder osteointegrative Wirkstoffe sowie Metallionen zur Unterstützung bzw. Steuerung biologischer Prozesse im implantatnahen Bereich). Hier könnten die unterschiedlichen Degradationsmechanismen der verschiedenen untersuchten Magnesiumphosphat-Modifikationen die Grundlage für kontrollierte und maßgeschneiderte Freisetzungskinetiken liefern.
10

Novel application forms and setting mechanisms of mineral bone cements / Neuartige Anwendungsformen und Abbindemechanismen mineralischer Knochenzemente

Brückner [geb. Christel], Theresa January 2019 (has links) (PDF)
Calcium phosphate cements (CPC) represent valuable synthetic bone grafts, as they are self-setting, biocompatible, osteoconductive and in their composition similar to the inorganic phase of human bone. Due to their long shelf-life, neutral setting and since water is sufficient for setting, hydroxyapatite (HA) forming cements are processed in different paste formulations. Those comprise dual setting, Ca2+ binding and premixed cement systems. With dual setting formulations, both dissolution and precipitation of the cement raw powder occur simultaneously to the polymerization of water-soluble monomers to form a hydrogel. Chelating agents are able to form complexes with Ca2+ released from the raw powder. Premixed systems mostly contain the raw powder of the cement and a non-aqueous binder liquid which delays the setting reaction until application in the moist physiological environment. In the present work, two of those reaction mechanisms allowed the development of HA based cement applications. Drillable cements are of high clinical interest, as the quality of screw and plate osteosynthesis techniques can be improved by cement augmentation. A drillable, dual setting composite from HA and a poly(2-hydroxyethyl methacrylate) hydrogel was analyzed with respect to the influence of monomer content and powder-to-liquid ratio on setting kinetics and mechanical outcome. While the conversion to HA and crystal growth were constantly confined with increased monomer amount, a minimum concentration of 50 % was required to see impressive ameliorations including a low bending modulus and high fracture energy at improved bending strength. Increasing the liquid amount enabled injection of the paste as well as drilling after 10 min of pre-setting. While classic bone wax formulations have drawbacks such as infection, inflammation, hindered osteogenesis and a lack of biodegradability, the as-presented premixed formulation is believed to exhibit outmatching properties. It consisted of HA raw powders and a non-aqueous, but water-miscible carrier liquid from poly(ethylene glycol) (PEG). The bone wax was proved to be cohesive and malleable, it withstood blood pressure conditions and among deposition in an aqueous environment, PEG was exchanged such that porous, nanocrystalline HA was formed. Incorporation of a model antibiotic proved the suitability of the novel bone wax formulation for drug release purposes. Prefabricated laminates from premixed carbonated apatite forming cement and poly(ε-caprolactone) fiber mats with defined pore architecture were presented as a potential approach for the treatment of 2-dimensional, curved cranial defects. They are flexible until application and were produced in a layer-by-layer approach from both components such that the polymer scaffold prevents the cement from flowing. It was demonstrated that solution electrospinning with a patterned collector for the fabrication of perforated fiber mats was suitable, as high fiber volume contents in combination with an appropriate interface enabled the successful fabrication of mechanically reinforced laminates. Mild immersion of the scaffolds under alkaline conditions additionally improved the interphase followed by an increase in bending-strength. Since few years, magnesium phosphate cements (MPC) have attracted increasing attention for bone replacement. Compared to CPC, MPC exhibit a higher degradation potential and high early strength and they release biologically valuable Mg2+. However, common systems offer some challenges while using them in non-classic cement formulations such as the need for foreign ion supply, the potential acidity of the reaction or the fast setting kinetics. Here, it was possible to develop a chelate-setting MPC paste with a broad spectrum of potential applications. The general mechanism of the novel setting principle was tested in a proof-of-principle manner. The cement paste consisted of farringtonite with differently concentrated phytic acid solution for chelate formation with Mg2+ from the raw powder. Adjusting the phytic acid content and adding a magnesium oxide as setting regulator to compensate its retarding effect resulted in drillable formulations. Additionally, there is a strong clinical demand for well working bone adhesives especially in a moist environment. Mostly the existing formulations are non-biodegradable. Ex vivo adhesion of the above presented MPC under wet conditions on bone demonstrated over a course of 7 d shear strengths of 0.8 MPa. Further, the hardened cement specimens showed a mass loss of 2 wt.% within 24 d in an aqueous environment and released about 0.17 mg/g of osteogenic Mg2+ per day. Together with the demonstrated cytocompatibility towards human fetal osteoblasts, this cement system showed promising characteristics in terms of degradable biocements with special application purposes. / Calciumphosphatzemente (CPC) stellen ein bedeutsames Knochenersatzmaterial dar, da sie selbstabbindend, biokompatibel, osteokonduktiv und der anorganischen Komponente humanen Knochens ähnlich sind. Durch ihre Lagerstabilität, neutrale Abbindereaktion und da Wasser zum Abbinden ausreicht, werden Hydroxylapatit (HA) bildende Zemente in dual abbindenden, Ca2+ chelatisierenden und vorgefertigten Zementen, verarbeitet. Bei dual abbindenden Formulierungen findet die Lösungs-Fällungs-Reaktion zeitgleich zur Polymerisation wasserlöslicher Monomere zu einem Hydrogel statt. Chelatbildner können mit aus dem Rohpulver freigesetzten Ca2+ Komplexe bilden. Vorgefertigte Zemente enthalten eine nicht-wässrige Trägerflüssigkeit, welche die Abbindereaktion bis zur Anwendung des Zements im feuchten Milieu verzögert. In der vorliegenden Arbeit wurden zwei dieser Reaktionsmechanismen zur Entwicklung HA basierter Anwendungsformen eingesetzt. Bohrbare Zemente sind von klinischem Interesse, da die Qualität einer Schrauben- oder Plattenosteosynthese durch Augmentation mit Zement verbessert werden kann. Bei einem bohrbaren, dual abbindenden Komposit aus HA und einem Poly-2-Hydroxyethylmethacrylat Hydrogel wurde der Einfluss des Monomergehalts und des Pulver-zu-Flüssigkeits-Verhältnisses auf die Abbindekinetik und mechanischen Eigenschaften untersucht. Während die Umwandlung zu HA und das Kristallwachstum mit zunehmendem Monomergehalt reduziert wurden, war eine minimale Konzentration von 50 % nötig, um signifikante Verbesserungen des Bruchverhaltens im Sinne eines niedrigen Biegemoduls und einer hohen Bruchenergie bei gesteigerter Biegefestigkeit nachzuweisen. Wurde der Flüssigkeitsgehalt erhöht, so konnte die Paste injiziert und nach 10 min des Abbindens gebohrt werden. Während klassische Knochenwachsformulierungen Infektionen, Entzündungen, gehinderte Knochenneubildung und mangelhafte Bioabbaubarkeit vorweisen, zeigt die hier dargestellte Formulierung überlegene Eigenschaften. Sie bestand aus HA-Rohpulvern und einer nicht-wässrigen, mit Wasser mischbaren Trägermasse aus Polyethylenglycol (PEG). Es wurde gezeigt, dass das Wachs kohäsiv und knetbar ist und Blutdruckbedingungen standhält. Bei Kontakt mit einer wässrigen Phase wurde das PEG diffusiv mit Wasser ausgetauscht, so dass ein poröser, nanokristalliner HA präzipitierte. Die Einbettung eines Modell-Antibiotikums bestätigte zudem die Eignung des neuartigen Wachses als Wirkstoffdepot. Als eine mögliche Behandlung von 2-dimensionalen, gekrümmten Defekten der Schädeldecke wurden präfabrizierte Laminate aus lagerstabiler, Carbonatapatit bildender Zementpaste und Polycaprolakton-Fasermatten mit definierter Porenarchitektur vorgestellt. Diese sind bis zu ihrer Anwendung flexibel und wurden durch einen schichtweisen Aufbau aus beiden Komponenten erzeugt, so dass der Polymerscaffold den Zement am Zerfließen hindert. Es wurde gezeigt, dass die Herstellung makroporöser Fasermatten durch Elektrospinnen aus der Lösung mittels eines perforierten Kollektors geeignet war, da der hohe Faservolumengehalt und angemessene Grenzflächeneigenschaften die erfolgreiche Herstellung mechanisch verstärkter Laminate ermöglichte. Bei milder Behandlung der Scaffolds mit alkalischer Lösung wurden die Grenzflächeneigenschaften weiter verbessert, was zu einer Steigerung der Biegefestigkeit führte. Seit einigen Jahren geht der Trend der Knochenzementforschung immer stärker in Richtung von Magnesiumphosphatzementen (MPC), da diese verglichen mit CPC ein erhöhtes Degradationspotential, eine hohe initiale Festigkeit, sowie die Freisetzung biologisch wertvoller Mg2+ aufweisen. Jedoch stellen gängige Systeme hohe Anforderungen bei der Verwendung in nicht-klassischen Zementen wie z.B. der Bedarf an Fremdionen und die saure sowie schnelle Abbindereaktion. Dennoch war es möglich, einen chelatisierenden MPC zu entwickeln, welcher ein breites Spektrum an möglichen Anwendungsformen bot. In einer Machbarkeitsstudie wurde untersucht, ob das Abbindeprinzip funktioniert. Die Paste bestand aus Farringtonit und unterschiedlich konzentrierter Phytinsäure. Diese sollte mit freigesetzten Mg2+ komplexieren. Durch Anpassung der Phytinsäurekonzentration und Zugabe von Magnesiumoxid als Abbindemodulator wurden bohrbare Formulierungen erhalten. Neben der Bohrbarkeit sind auch adhäsive Eigenschaften der Zemente im feuchten Milieu von klinischem Interesse, wobei kommerziell erhältliche Systeme meist nicht bioabbaubar sind. Daher wurde die ex vivo Klebehaftung dieses MPC nach 7 d unter nassen Bedingungen auf Knochen analysiert, wobei sich eine Abscherfestigkeit von 0.8 MPa ergab. Des Weiteren zeigten diese Zemente einen Masseverlust von 2 Gew.% innerhalb von 24 d in wässriger Umgebung, sowie die Freisetzung von 0.17 mg/g an osteogenen Mg2+ pro Tag. Zusammen mit der bestätigten Zytokompatibilität bezüglich humaner fetaler Osteoblasten ist dieses System vielversprechend für die Anwendung als abbaubarer Biozement für unterschiedliche klinische Zwecke.

Page generated in 0.1825 seconds