• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tailored Properties of Ferromagnetic Thin Films

Warnicke, Peter January 2008 (has links)
Magnetic thin films and patterned nanostructures have been studied with respect to their magnetic properties using SQUID-magnetometry, magnetic force microscopy, electrical measurements, and micromagnetic calculations. Properties of vortex domain walls, trapped in Permalloy nanowires with artificial constrictions, were investigated experimentally and by numerical calculations. In particular, the geometrical extent and strength of the pinning potential were evaluated. In these wires, long-range vortex domain wall displacement induced by spin polarized alternating currents was obtained numerically at reduced threshold current densities as compared with the direct current case. Due to the asymmetry of the energy potential, the long-range displacement direction is determined by the vortex chirality. Strained FeCo/Pt superlattices with strong perpendicular anisotropy were investigated experimentally. The strain was controlled by varying the thickness of each alternating layer with monolayer precision and was found to have a dominating effect on the total anisotropy. Epitaxial films of the diluted magnetic semiconductor (Ga,Mn)As were studied with focus on how the ferromagnetic transition temperature could be controlled by post-growth annealing. The ferromagnetic transition temperature was enhanced by approximately 85% for a Mn-doping concentration of 6% under certain conditions. A method to manipulate micrometer sized magnetic particles on patterned arrays of elliptical Permalloy microstructures was studied. Controlled motion and separation of the magnetic particles were obtained using applied rotating magnetic fields. The domain structure of the elliptical elements was studied numerically.

Page generated in 0.0858 seconds