• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 18
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Numerical Study of Dynamic Micromagnetics

Zhang, He 22 May 2006 (has links)
This research work focuses on studying the four micromagnetic fields, exchange field, anisotropy field, demagnetization field and applied field. Based on the related algorithms for programming given, a set of software for micromagnetics calculation is developed successfully in C++. Several attempts are also made to reduce the calculation complexity. Finally this program is verified with standard problem 3 from the mumag (or micromagnetics) society. It was also used to simulate a process with a specific initial state with spins pointing each other, and the result is discussed following. This program can also display the dynamic process of the simulation in MATLAB, which gives the information inside the material. More, this whole work is expected to be modified in order that it can easily take advantage of software platforms for parallel workstation, such as CACTUS for sharing the computer resource for further investigation.
2

Microgmagnetics Study of "Seed" Induced Incoherent Magnetic Reversal in a Cobalt Element Array

Chen, Hanning 16 May 2003 (has links)
A stochastic dynamic micromagnetics code using the LLG equation has been developed and applied to study the seed induced magnetic reversal of a cobalt element array. The spin orientation of the seed element is chosen to be antiparallel to the spin orientation of the first element in the array producing a domain wall that is stabilized by the strong crystalline anisotropy and exchange interactions of cobalt. By exposing the element array to an applied magnetic field for a specific time, the domain wall moved along the easy axis and was pinned at a specific position. In this manner, the portions of the element array to be switched could be controlled arbitrarily and information can be stored in the array in terms of the total magnetization of the array. The effects of the magnitude of applied field, the cutting area and the cellsize of the element array were also studied.
3

Storage Physics and Noise Mechanism in Heat-Assisted Magnetic Recording

Li, Hai 01 September 2016 (has links)
As cloud computing and massive-data machine learning are applied pervasively, ultra-high volume data storage serves as the foundation block. Every day, nearly 2.5 quintillion bytes (50000 GB/second in 2018) of data is created and stored. Hard Disk Drive (HDD) takes major part of this heavy duty. However, despite the amazing evolution of HDD technology during the past 50 years, the conventional Perpendicular Magnetic Recording (PMR), the state-of-the-art HDD technique, starts to have less momentum in increasing storage density because of the recording trilemma. To overcome this, Heat-Assisted Magnetic Recording (HAMR) was initially proposed in 1990s. With years of advancement, recent industrial demos have shown the potential of HAMR to actually break the theoretical limit of PMR. However, to fully take advantage of HAMR and realize the commercialization, there are still quite a few technical challenges, which motivated this thesis work. Via thermal coupled micromagnetic simulation based upon Landau-Lifshitz-Bloch (LLB) equation, the entire dynamic recording process has been studied systematically. The very fundamental recording physics theorem is established, which manages to elegantly interpret the previously conflicting experimental observations. The thermal induced field dependence of performance, due to incomplete switching and erase-after-write, is proposed for the first time and validated in industrial lab. The combinational effects form the ultimate physical limit of this technology. Meanwhile, this theorem predicts the novel noise origins, examples being Curie temperature distribution and temperature distribution, which are the key properties but ignored previously. To enhance performance, utilizations of higher thermal gradient, magnetically stiffer medium, optimal field etc. have been suggested based upon the theorem. Furthermore, a novel concept, Recording Time Window (RTW), has been proposed. It tightly correlates with performance and serves as a unified optimization standard, summarizing almost all primary parameters. After being validated via spin stand testing, the theorem has been applied to provide solutions for guiding medium design and relaxing the field and heating requirement. This helps solve the issues around writer limit and thermal reliability. Additionally, crosstrack varying field has been proposed to solve the well-known transition curvature issue, which may increase the storage density by 50%.
4

Numerical investigation of micro-macro coupling in magneto-impedance sensors for weak field measurements

Eason, Kwaku 25 August 2008 (has links)
There is strong interest in the use of small low-cost highly sensitive magnetic field sensors for applications (such as small memory and biomedical devices) requiring weak field measurements. Among weak-field sensors, the magneto-impedance (MI) sensor has demonstrated an absolute resolution on the order of 10-11 T. The MI effect is a sensitive realignment of a periodic magnetization in response to an external magnetic field within small ferromagnetic structures. However, design of MI sensors has relied primarily on trial and error experimental methods along with decoupled models that separate the micromagnetic and classical electromagnetic equations describing the MI effect. To offer a basis for more cost-effective designs, this thesis research presentation begins with a general formulation describing MI sensors, which relaxes assumptions commonly made leading to decoupling. The coupled set of nonlinear equations is solved numerically using an efficient meshless method in a point collocation formulation. For the problem considered, the chosen method is shown to offer advantages over alternative methods including the finite element method. In the case of time, projection methods are used to stabilize the time discretization algorithm while quasi-Newton methods (nonlinear solver) are shown to be more computationally efficient, as well. Specifically, solutions for two MI sensor element geometries are presented, which were validated against published experimental data. While the examples illustrated here are for MI sensors, the approach presented can also be extended to other weak-field sensors like fluxgate and Hall effect sensors.
5

Parallelisation of micromagnetic simulations

Nagy, Lesleis January 2016 (has links)
The field of paleomagnetism attempts to understand in detail the the processes of the Earth by studying naturally occurring magnetic samples. These samples are quite unlike those fabricated in the laboratory. They have irregular shapes; they have been squeezed and stretched, heated and cooled and subjected to oxidation. However micromagnetic modelling allows us to simulate such samples and gain some understanding of how a paleomagnetic signal is acquired and how it is retained. Micromagnetics provides a theory for understanding how the domain structure of a magnetic sample alters subject to what it is made from and the environment that it is in. It furnishes the mathematics that describe the energy of a given domain structure and how that domain structure evolves in time. Combining micromagnetics and ever increasing computer power, it has been possible to produce simulations of small to medium size grains within the so-called single to pseudo single domain state range. However processors are no longer built with increasing speed but with increasing parallelism and it is this that must be exploited to model larger and larger paleomagnetic samples. The purpose of the work presented here is twofold. Firstly a micromagnetics code that is parallel and scalable is presented. This code is based on FEniCS, an existing finite element framework, and is shown to run on ARCHER the UK’s national supercomputing service. The strategy of using existing libraries and frameworks allow future extension and inclusion of new science in the code base. In order to achieve scalability, a spatial mapping technique is used to calculate the demagnetising field - the most computationally intensive part of micromagnetic calculations. This allows grain geometries to be partitioned in such a way that no global communication is required between parallel processes - the source of favourable scaling behaviour. The second part of the theses presents an exploration of domain state evolution in increasing sizes of magnetite grains. This simulation, whilst a first approximation that excludes magneto-elastic effects, is the first attempt to map out the transition from pseudo-single domain states to multi domain states using a full micromagnetic simulation.
6

Cylindrical Nanowires for Water Splitting and Spintronic Devices

Moreno Garcia, Julian 10 June 2021 (has links)
Energy enables basic and innovative services to reach a seemingly ever-growing population and when its generation costs are reduced or when its usage is optimized it has the greatest impact on the reduction of poverty. Furthermore, there is a pressing need to decouple energy generation from non-renewable and carbon-heavy sources which has led mayor economies to increase research efforts in these areas. This thesis discusses research on water oxidation using nanostructured iron oxide electrodes and current-induced magnetic domain wall motion in nickel/cobalt bi-segmented nanowires. These two fields may seem disparate at first glance, but are linked by such common theme: materials for energy, and more precisely, materials for energy conversion and economy. The work presented in this document aims also to reflect this theme by using widely available materials like iron and aluminum, and optimizing the methods to produce the final samples using the least resources possible. All samples were prepared by electroplating metals (iron, cobalt and nickel) into anodized alumina templates fabricated inhouse. For water oxidation, iron nanorods were integrated into an electrode and annealed in air, while nickel/cobalt nanowires were isolated and contacted individually to test for spintronics-related effects. Spintronic-based devices aim to reduce energy usage in nowadays microelectronic devices. The nanostructured iron oxide electrode showed its usefulness for water oxidation in a laboratory environment, making it an appropriate complement to other electrodes specially designed for water reduction in a photoelectrochemical cell. This two-electrode design, allows for hydrogen and oxygen to be produced at each electrode and therefore eases their separate collection for, e.g., fuel or fertilizers. On the other hand, this work presents one of the first experimental demonstration of current-induced domain wall motion in soft/hard cylindrical magnetic nanowires at zero applied external magnetic field. These kinds of experiments are expected to be the first of many which will allow researchers in the field to test for spintronic-relevant properties and interactions in cylindrical magnetic nanowires.
7

Modeling Shape Effects in Nano Magnetic Materials With Web Based Micromagnetics

Zhao, Zhidong 21 May 2005 (has links)
This research work focuses on the geometry and shape effects on submicron magnetic material. A web based micromagnetics program is written to model the hysteresis loop of nano magnetic samples with arbitrary geometry shapes and multiple magnetic materials. Three material samples have been modeled with this program along with nano magnets with a variety of geometric shapes. Shape anisotropy has been introduced to a permalloy ring by adding a cross-tie structure with various widths. The in-plane hysteresis loop and reversal behavior have no notable difference in direction parallel to the cross-tie, but greatly changed in perpendicular and diagonal directions. The switching field distribution is significantly reduced. The two distinct "onion" bit states of the modified ring elements are stabilized in the hysteresis in the diagonal direction. The changes in the modified rings make them better candidates for Magnetic Random Access Memory elements. Two Pac-Man elements, PM I and PM II, geometrically modified from disc and half disc respectively, are modeled. The PM I element undergoes a magnetic reversal through a two-stage mechanism that involves nucleation in the left and right middle areas followed by vortex core formation and vortex core motion in the lower middle area. The reversal process of the PM II element lacks the vortex core formation and motion stage. The switching field of the PM I and PM II elements are the same but the switching field distribution of the PM II elements is much narrower than that of the PM I element. Only the PM II element meets MRAM application requirements. The thickness dependence of the magnetic properties of a core-shell structure has been studied. The nano particles have a cobalt core and a permalloy shell. The nano spheres are the same size but with various shell thickness. Simulations reveal a multi-stage reversal process without the formation of a Bloch wall for thin-shell structure and smooth reversal process with the formation and motion of a Bloch wall for thick-shell structure. Gradual transition of the hysteresis loop patterns has been observed.
8

Précession de l'aimantation en géométrie confinée: aspects physiques et numériques

ALBUQUERQUE, Gonçalo 15 July 2002 (has links) (PDF)
Non disponible
9

On Some Properties and Applications of Patterned Ferromagnetic Thin Films

Roy, Pierre E. January 2006 (has links)
A microwave reflection method has been used to measure the spin excitations corresponding to the translational mode of magnetic vortices in samples containing either one or two vortices. Experimental findings are complemented by micromagnetic simulations. One-vortex systems are investigated in micron-sized circular and elliptical cylinders. For ellipses, the resonance frequency can effectively be tuned by applying static magnetic fields and the field dependence of the frequency is significant for fields applied along the short axes but negligible when applied along the long axes of the ellipses. This is contrary to the circular case, where virtually no field dependence was found. This can be understood by considering the shape of the vortex potential well. Further, it is found that the resonance frequency is independent on the direction of the excitation field for the one-vortex systems. Ellipses containing two interacting vortices are also investigated. It is shown that the relative vortex core polarizations dominate the vortex translational mode and cause, in the case of opposite polarizations, a dependence on the excitation field direction. For parallel core polarizations, no dependence on the excitation field direction is found. The dependence of the resonance frequencies on applied static fields along the long and short axes are also experimentally mapped out and compared with micromagnetic simulations, where the possible eigenmodes are determined. Another section of the thesis introduces the dawning of a device based on patterned magnetic elliptical elements for the manipulation and movement of magnetic particles on a surface. The controlled movement and separation of individual particles are successfully demonstrated. Contributions to micromagnetic standard problems and simulations on magnetization switching in nanoscale particles have also been performed. The standard problems highlight some important aspects of choosing the discretization cell sizes and the finite temperature simulations show that thermal fluctuations can alter the magnetization reversal paths.
10

Field-Coupled Nano-Magnetic Logic Systems

Pulecio, Javier F. 30 September 2010 (has links)
The following dissertation addresses the study of nano-magnetic devices configured to produce logic machines through magnetostatic coupling interactions. The ability for single domain magnets to reliably couple through magnetostatic interactions is essential to the proper functionality of Magnetic Cellular Automata (MCA) devices (p. 36). It was significant to explore how fabrication defects affected the coupling reliability of MCA architectures. Both ferromagnetic and anti-ferromagnetic coupling architectures were found to be robust to common fabrication defects. Experiments also verified the functionality of the previously reported MCA majority gate [1] and a novel implementation of a ferromagnetic MCA majority gate is reported. From these results, the study of clocking Magnetic Cellular Automata (MCA) interconnect architectures was investigated (p. 54). The wire architectures were saturated under distinct directions of an external magnetic field. The experimental results suggested ferromagnetic coupled wires were able to mitigate magnetic frustrations better than anti-ferromagnetic coupled wires. Simulations were also implemented supporting the experimental results. Ferromagnetic wires were found to operate more reliably and will likely be the primary interconnects for MCA. The first design and implementation of a coplanar cross wire system for MCA was constructed which consisted of orthogonal ferromagnetic coupled wires (p. 68). Simulations were implemented of a simple crossing wire junction to analyze micro-magnetic dynamics, data propagation, and associated energy states. Furthermore, two systems were physically realized; the first system consisted of two coplanar crossing wires and the second was a more complex system consisting of over 120 nano-magnetic cells. By demonstrating the combination of all the possible logic states of the first system and the low ground state achieved by the second system, the data suggested coplanar cross wire systems would indeed be a viable architecture in MCA technology. Finally, ongoing research of an unconventional method for image processing using nano-magnetic field-based computation is presented (p. 79). In magnetic field-based computing (MFC), nano-disks were mapped to low level segments of an image, and the magnetostatic coupling of magnetic dipole moments was directly related to the saliency of a low level segment for grouping. A proof of concept model for two MFC systems was implemented. Details such as the importance of fabricating circular nano-magnetic cells to mitigate shape anisotropy, experimental coupling analysis via Magnetic Force Microscopy, and current results from a complex MFC system is outlined.

Page generated in 0.0425 seconds