• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Shape Effects in Nano Magnetic Materials With Web Based Micromagnetics

Zhao, Zhidong 21 May 2005 (has links)
This research work focuses on the geometry and shape effects on submicron magnetic material. A web based micromagnetics program is written to model the hysteresis loop of nano magnetic samples with arbitrary geometry shapes and multiple magnetic materials. Three material samples have been modeled with this program along with nano magnets with a variety of geometric shapes. Shape anisotropy has been introduced to a permalloy ring by adding a cross-tie structure with various widths. The in-plane hysteresis loop and reversal behavior have no notable difference in direction parallel to the cross-tie, but greatly changed in perpendicular and diagonal directions. The switching field distribution is significantly reduced. The two distinct "onion" bit states of the modified ring elements are stabilized in the hysteresis in the diagonal direction. The changes in the modified rings make them better candidates for Magnetic Random Access Memory elements. Two Pac-Man elements, PM I and PM II, geometrically modified from disc and half disc respectively, are modeled. The PM I element undergoes a magnetic reversal through a two-stage mechanism that involves nucleation in the left and right middle areas followed by vortex core formation and vortex core motion in the lower middle area. The reversal process of the PM II element lacks the vortex core formation and motion stage. The switching field of the PM I and PM II elements are the same but the switching field distribution of the PM II elements is much narrower than that of the PM I element. Only the PM II element meets MRAM application requirements. The thickness dependence of the magnetic properties of a core-shell structure has been studied. The nano particles have a cobalt core and a permalloy shell. The nano spheres are the same size but with various shell thickness. Simulations reveal a multi-stage reversal process without the formation of a Bloch wall for thin-shell structure and smooth reversal process with the formation and motion of a Bloch wall for thick-shell structure. Gradual transition of the hysteresis loop patterns has been observed.
2

FINITE ELEMENT ANALYSIS OF FACTORS INFLUENCING DISPLACEMENT MEASUREMENT USING PLANAR INDUCTIVE SENSORS

Yu, Xueyang 01 July 2020 (has links)
No description available.
3

Shape and Hydrophobicity Effects of Titanium Dioxide Nanoparticles on Blood Plasma Protein Adsorption

Chen, Jiadong 25 August 2020 (has links)
No description available.
4

Study of the Effect of Nanostructuring on the Magnetic and Electrocatalytic Properties of Metals and Metal Oxides

Popa, Adriana 03 June 2015 (has links)
No description available.
5

Study of shape effect of Pd promoted Ga2O3 nanocatalysts for methanol synthesis and utilization

Zhou, Xiwen January 2013 (has links)
The area of methanol synthesis and utilization has been attracting research interests due to its positive impact on the environment and also from energy perspectives. Methanol synthesis from CO<sub>2</sub> hydrogenation not only produces methanol which is a key platform chemical and a clean fuel, but can also recycle CO<sub>2</sub> which is one of the major greenhouse gases causing global warming. As a mobile energy carrier (particularly as a hydrogen carrier), methanol is a versatile molecule which is able to generate H<sub>2</sub> via its decomposition. Catalysis plays a decisive role in the success of both methanol synthesis from CO<sub>2</sub> hydrogenation and its reverse decomposition reaction. Pd/Ga<sub>2</sub>O<sub>3</sub> binary catalyst has recently been identified as an active catalyst for the methanol synthesis reaction. In this thesis, it is reported the shape effect of Pd promoted Ga<sub>2</sub>O<sub>3</sub> for this reaction. The catalytic H<sub>2</sub> evolution from methanol photodecomposition has also been studied over these catalysts. Three shapes of Ga<sub>2</sub>O</sub>3</sub> nanomaterials (i.e. rod and plate β-Ga<sub>2</sub>O</sub>3</sub>, and particle γ-Ga<sub>2</sub>O<sub>3</sub>) have been synthesized, followed by doping with Pd metal to form corresponding Pd/Ga<sub>2</sub>O<sub>3</sub> nanocatalysts. It was found that a (002) polar Ga2O3 surface which was dominantly presented on the plate form was unstable, giving a higher degree of oxygen defects and mobile electrons in the conduction band than the other non-polar (111) and (110) surfaces of the rod form. It was shown that a significantly stronger metal support interaction was found between the (002) polar Ga<sub>2</sub>O<sub>3</sub> on the plate form and Pd, which gave higher methanol yield and selectivity. For methanol photodecomposition, it was found that, for pure Ga<sub>2</sub>O<sub>3</sub> catalysts of different shapes, the plate form with a highest degree of defects (unstable polar surface) could encourage a non-radiative catalytic recombination of electron and hole pairs upon irradiation, hence giving a highest photocatalytic activity for H<sub>2</sub> production. Once Pd was introduced onto these oxide surfaces, it was noted that there was a fast and readily electron transfer from the conduction band of Ga<sub>2</sub>O<sub>3</sub> to Pd due to the formation of a Schottky junction between the two materials. This produces metal sites for hydrogen production and further enhances the rate of the photocatalytic reaction over the radiative recombination of excitons. However, it was also found that at higher Pd content (>1%), the significantly shortened exciton lifetimes reduce the catalytic rate hence giving an overall volcanic response of activity to increasing Pd content for each shape of Ga<sub>2</sub>O<sub>3</sub>. At the higher Pd content, the plate form appeared to sustain a longer lifetime for photocatalysis compared to the other forms at the equivalent Pd loading.
6

Martensita induzida por deformação a temperatura ambiente na liga de 3,5Ni 1V 13,8Al Cu com efeito, memória de forma / MARTENSITE INDUCED BY DEFORMATION AT ROOM TEMPERATURE IN THE ALLOY OF 3,5Ni-1V-13,8Al-Cu WITH SHAPE MEMORY EFFECT

Guedes, Nilmário Galdino 28 October 2008 (has links)
Made available in DSpace on 2015-05-08T14:59:52Z (GMT). No. of bitstreams: 1 parte1.pdf: 2223950 bytes, checksum: 585473348fd57251708f0ba93240c53b (MD5) Previous issue date: 2008-10-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The presented work consists of a study for observation of the martensite kept in the transformation of martensite phase - austenite in a alloy of Ni - Al - V, with memory shape effect, into, a room temperature. We defined that the alloy with composition the 3,5% (in weigh) of nickel, presents better results when happens successive loading and downloading cancel though, 3,0% of deformation into a room temperature, back to austenite phase after retreat the load. Above 3,0% of deformation became evident the appearance of retrain martensite. For her identification it was necessary the development of on equipment to traction, as well as bodies of proofs dimensioned for that. The analyses were done through X rays diffraction of optical microscopy and rehearsal of traction. / O trabalho apresentado consta de um estudo para observação da martensita retida na transformação de fase de martensita austenita em uma liga de Ni Al V, com efeito de memória de forma, a temperatura ambiente. Definimos que a liga com composição 3,5% (em peso) de níquel, apresenta melhor resultado quando submetida a carregamento e descarregamento sucessivos; chegando a 3,0% de deformação a temperatura ambiente, retornando ao estado austenítico depois de retirada a carga. Acima de 3,0% de deformação, evidencia-se o surgimento de martensita retida. Para sua identificação, foi necessária a confecção de um equipamento para tracionar, como também corpos de prova dimensionados para tanto. As observações foram realizadas através de análises de raios X, microscopia ótica e ensaios de tração.
7

Structure, Stability, Vibrational, Thermodynamic, And Catalytic Properties Of Metal Nanostructures: Size, Shape, Support, And Adsorbate Effects

Behafarid, Farzad 01 January 2012 (has links)
Recent advances in nanoscience and technology have provided the scientific community with new exciting opportunities to rationally design and fabricate materials at the nanometer scale with drastically different properties as compared to their bulk counterparts. A variety of challenges related to nanoparticle (NP) synthesis and materials characterization have been tackled , allowing us to make more homogenous, well defined, size- and shape-selected NPs, and to probe deeper and more comprehensively into their distinct properties. In this dissertation, a variety of phenomena relevant to nanosized materials are investigated, including the thermal stability of NPs and coarsening phenomena in different environments, the experimental determination of NP shapes, gaining insight into NP-support interactions, epitaxial relationships, and unusual thermodynamic and electronic properties of NPs, including the effect of adsorbates on the electron density of states of small clusters, and the chemical, and structural evolution of NPs under reaction conditions. In chapter 2, a general description of different characterization tools that are used in this dissertation is provided. In chapter 3, the details of two different methods used for NP synthesis, namely inverse micelle encapsulation and physical vapor deposition (PVD) are described. Chapter 4 describes the thermal stability and coarsening behavior of Pt NPs supported on TiO2(110) and γ-Al2O3 as a function of the synthesis method, support pretreatment, and annealing environment. For the Pt/TiO2(110) system, micellesynthesized NPs showed remarkable stability against coarsening for annealing temperatures up to 1060°C in vacuum, in contrast to PVD-grown NPs. When comparing v different annealing environments (H2, O2, H2O), Pt NPs on γ-Al2O3 annealed in O2 were found to be the least affected by coarsening, followed by those heated in H2O vapor. The largest NP growth was observed for the sample annealed in H2. The role of the PtOx species formed under oxidizing conditions will be discussed. In chapter 5, the shape of Pt and Au NPs and their epitaxial relationship with the TiO2(110) support was extracted from scanning tunneling microscopy (STM) measurements. Three main categories of NP shapes were identified, and through shape modeling, the contribution of facets with different orientations was obtained as a function of the number of atoms in each NP. It was also shown that the micellesynthesized Pt and Au NPs have an epitaxial relationship with the support, which is evident from the fact that they always have one symmetry axis parallel to TiO2(110) atomic rows in [001] directions. Chapter 6 describes how the presence of NPs on TiO2(110) surface affects its reconstruction upon high temperature annealing in vacuum. In contrast to NP-free TiO2(110) substrates, long and narrow TiO2 stripes are observed for Pt NP-decorated surfaces. This phenomenon is explained based on the stabilization of TiO2, induced by Pt NPs, which hinders the desorption of oxygen atoms in TiO2 to vacuum. In chapter 7, a systematic investigation of the thermodynamic properties of γ- Al2O3-supported Pt NPs and their evolution with decreasing NP size is presented. A combination of in situ extended x-ray absorption fine structure spectroscopy (EXAFS), ex situ transmission electron microscopy (TEM) measurements, and NP shape modeling is used to obtain the NPs shape, thermal expansion coefficient, and Debye vi temperature. The unusual thermodynamic behavior of these NPs such as their negative thermal expansion and enhanced Debye temperature are discussed in detail. Chapter 8 presents an investigation of the electronic properties of size-controlled γ-Al2O3-supported Pt NPs and their evolution with decreasing NP size and adsorbate (H2) coverage. The hydrogen coverage of Pt NPs at different temperatures was estimated based on XANES data and was found to be influenced by the NP size, and shape. In addition, correlations between the shift in the center of the unoccupied d-band density of states (theory) and energy shifts of the XANES spectra (experiment) upon hydrogen chemisorption as well as upon modification of the NP structure were established. Chapter 9 is dedicated to an operando study, describing the evolution of the structure and oxidation state of ZrO2-supported Pd nanocatalysts during the in-situ selective reduction of NO in H2 via EXAFS and XANES measurements.
8

Topologically Designed Cylindrical and Spherical Building Blocks to Construct Modular-Assembled Structures in Giant Shape-Amphiphiles

JIANG, JING 24 May 2018 (has links)
No description available.
9

Effect of Particle Shape on the Mechanical Behaviour of Granular Media : Discrete Element Simulations

Anitha Kumari, S D January 2012 (has links) (PDF)
Granular materials are characterized by its discrete nature which makes their behaviour very complex to understand when subjected to various loading situations. Comparing other materials, the understanding of granular materials is poor. This is because experimental analysis provides the macroscopic responses of the considered assembly whereas the discrete nature of the particles point to the fact of understanding the micro scale details and correlating it with the overall behaviour. Among the various modeling tools viz. analytical, physical or numerical, Discrete Element Method (DEM) a numerical technique, originally developed by Cundall (1971, 1974) and modified by Cundall and Strack (1979a, 1979b) is widely used for granular materials. Later a thorough description of DEM was given by Cundall (1988) and Hart et al (1988). Moreover Cundall & Hart (1992) reported discrete element code as one which allows finite displacements and rotations of discrete bodies along with recognition of new contacts as the calculation progresses which is followed in particle flow code and is used for this study. Generally the discrete particles are modeled as discs or spheres in 2-D and 3-D simulations respectively. The discs or spheres were considered as it is very easy to characterize the grain interactions and the contact detection. Even though the significance of particle shape has been reported in literature, a comprehensive 3-D study of the effect of particle shape on the various aspects of soil behaviour is lacking and is not reported. Particle shape is generally defined in terms of elongation, roundness and texture. Elongation is an indication of the particle aspect ratio whereas roundness measures the sharpness or angularity of particle’s edges and corners. Texture is related to the roughness of the surface. Particle gradation also plays a role in the mechanical behaviour. The influence of each of these factors on the mechanical behaviour of the assembly is important. Hence the major factors like elongation, texture etc which are used to define the particle shape are incorporated in this study. Evaluating the particle shape is another hurdle. In this study, the particle shape is analyzed using a 3D laser scanner which helps to identify the major and minor axis lengths of the particle. Additionally, the effective use of 3D DEM on large scale real life applications incorporating the particle shape effect is also not dealt with very extensively. Hence in this research, a comprehensive study on the calibration of DEM using glass beads, effect of particle shape on drained and undrained monotonic behaviour, liquefaction, post liquefaction and dynamic properties and the application of DEM to a grain polishing machine and an underground tunnel assembly is presented. In the present study, a set of drained triaxial tests were done on glass bead assembly using a laboratory triaxial set up. The glass beads used for the test were spherical and ellipsoidal in shape. The shape of glass beads was characterized through a sophisticated method of 3D laser scanning. In this scanning, the shape of the image of the glass bead is captured through an array of digitized points. These images obtained as unstructured 3D triangular meshes on processing will render the long and short axes of the particle which can be used for proper modeling of the particle shape. After obtaining the long and short axes for the particles, the same is used for the numerical modeling of the glass beads. The numerical simulation results have shown that the assembly modeled with clumped particles gives results qualitatively and quantitatively similar to the observed experimental macro responses. Hence this is used to demonstrate the power of DEM to realistically model the granular behaviour by incorporating the particle shape effect. In addition, undrained simulation of granular material has been numerically predicted from drained triaxial tests which are similar to the approach proposed by Norris et al (1997). An excellent correlation between undrained results predicted from drained triaxial test and undrained test (performed under constant volume conditions) has been observed. This further underlines the fact that the constant volume simulations are equivalent to undrained tests. Having validated the DEM results to the values obtained from the experiments on glass beads, a series of monotonic drained and undrained triaxial tests were performed on cylindrical assemblies of height to diameter ratio 2:1. Four different sets of assemblies were prepared which consists of particles of different aspect ratio to study the influence of particle shape. The behaviour of these assemblies under drained shearing indicates that the strength of the clumped assemblies is higher than that of the spherical assembly at all confining pressures. This has been explained from the magnitude of the anisotropic vi coefficients associated with the fabric and normal contact force tensors. It is also noted that eventhough both assemblies reach the peak strength at the same axial strain, the strain softening associated with the clumped assembly is very rapid which is due to the fact that clumps try to push each other apart as it offers more resistance to rotation resulting in dilation. Another significant observation is that a general increase in aspect ratio will not keep on increasing the strength. As the aspect ratio increases, the particles have a tendency to orient along their larger dimensions. This helps them to attain the lowest potential energy leading to a stable equilibrium and resulting in inherent fabric anisotropy. But when the particles try to align along the larger dimension, the formation of strong contact forces along the direction of loading is hindered. In addition, the lower strength associated with the higher aspect ratio particle assembly can also be attributed to the formation of unexpected void spaces when these longer particles bridge gaps over the underlying grains. The critical state studies indicate that the clumped assembly is having a higher residual strength compared to that of the spherical assembly. In the case of clumped assemblies also, irrespective of the initial loose or dense state of the assembly and the confining pressure applied, the samples reached the same critical state which underlines that the critical state is unique for a granular material. Moreover, the critical state line is non-linear for both the spherical and clumped assemblies. The studies conducted on the liquefaction behaviour indicates that at lower confining pressures the assemblies with particles consisting of lower aspect ratios loses its strength at less number of cycles which can be attributed to the interlocking of non-spherical particles resulting in higher number of contacts per particle. Moreover, during the initial cycles of loading, it is seen that the strong contacts are predominantly in the vertical direction or more precisely along the direction of maximum axial strain. But the plots extracted at higher cycles indicated that the strong contacts along the vertical direction have diminished considerably. This reduction in contact force magnitude and force chain indicates a drop in the number of contacts and is clearly visible in the gradual decrease of average coordination number. Another significant observation is that as the confining stresses increases, the rate of pore pressure generation of the assembly vii consisting of only spherical particles is less compared to the other two samples. Furthermore, at higher confining pressures, when the load direction reverses, the fabric of the clumped assemblies fails to change to a new orientation immediately. But to retain equilibrium the force anisotropy will quickly adjust itself. This mismatch results in losing the contacts and resulting in lower strength and less resistance to liquefaction at higher stresses for assemblies consisting of clumped particles. The post liquefaction study of the numerically liquefied samples shows that the assembly consisting of clumped shaped particles gained strength at a much faster rate compared to the assembly consisting of only spheres. This may be attributed to the ability of the clumps to rearrange themselves on a faster rate compared to that of the spherical particles. The rate of development of average coordination number is very significant as it explains the ability of the assembly to build up the deviatoric stress from a complete collapsed structure. As the contacts develop, the average coordination number as well as the deviatoric stress starts increasing with both the values higher for the assembly consisting of clumped particles. The evaluation of the dynamic properties viz. shear modulus and damping ratio showed a trend similar to the experimental observations on real granular materials. It is observed that the normalized shear modulus reduces with an increase in shear strain and the rate of reduction is very high at low strains for all the samples. It can be seen that as the confining pressure increases, the normalized shear modulus value also increases and the rate of increment is higher for the assemblies consisting of non-spherical particles. Furthermore, for all the samples the threshold shear strain is about 0.001 up to which the behaviour is elastic. Beyond the threshold shear strain, the variation of the normalized shear modulus ratio is non-linear. At small shear strains, the energy dissipation is low resulting in smaller values of damping. As the strains increase, the non-linearity in the constitutive behaviour results in higher material damping leading to high damping value. The simulations of the food polishing machine helps to understand the pattern of hitting of clumped grains on the wall with due importance to the velocity of hit, angle of hit, force of hit, and the number of grains hitting the wall. The modeling and subsequent extraction of the data helped to identify that the wear and tear of the machine was not uniform and was clustered to specific regions due to the non-uniform distribution of the considered parameters. This helped to design a more sophisticated system such that the parts which are subjected to more deterioration are provided with additional support. To bring out the effect of the particle shape, simulations are performed using spherical particles and the results show that the pattern of variation is same, but the magnitudes are different owing to the less surface area associated with the spherical particles. The 3-D simulations of an underground tunnel assembly in a weak weathered rock helped to understand the variation in the stability of the system with and without lining. It was observed that the introduction of lining resulted in a more stable configuration and the circumferential stresses were found to be distributed uniformly around the tunnel. FEM simulations also show a similar trend of stress and strain variations but were unable to capture the ground loosening around the tunnel and the formation of the ground arch whereas DEM could realistically capture all these phenomena. It was observed that as the shape changes from sphere to non-spherical particles, circumferential stresses around the tunnels increased. In addition, as the distance from the tunnel face increases, the strains are reduced. The maximum vertical strain near the crown of the tunnel is observed for the assembly consisting of spherical particles. In short, this research is focused on a comprehensive understanding of the particle shape effect on the mechanical behaviour of granular mass. Numerical simulations incorporating the shape effect has been done on drained and undrained monotonic shear tests, critical state, liquefaction, post liquefaction and dynamic properties. Besides, the granular dynamics simulation of the movement of long food grains in a food polishing machine and the behaviour of an underground tunnel in a granular assembly is also reported.

Page generated in 0.0467 seconds