Spelling suggestions: "subject:"magnetic bubble""
1 |
Domain structure and magnetization processes of complex magnetic multilayersBran, Cristina 27 May 2010 (has links) (PDF)
The magnetization processes of antiferromagnetically (AF) coupled Co/Pt multilayers on extended substrates and of Co/Pd multilayers deposited on arrays of 58 nm spheres are investigated via magnetic force microscopy at room temperature by imaging the domain configuration in magnetic fields. Adding AF exchange to such perpendicular anisotropy systems changes the typical energy balance that controls magnetic band domain formation, thus resulting in two competing reversal modes for the system. In the ferromagnetic (FM) dominated regime the magnetization forms FM band domains, vertically correlated. By applying a magnetic field, a transition from band to bubble domains is observed. In the AF-exchange dominated regime, by applying a field or varying the temperature it is possible to alter the magnetic correlation from horizontal (AF state) to vertical (FM state) via the formation of specific multidomain states, called metamagnetic domains. A theoretical model, developed for complex multilayers is applied to the experimentally studied multilayer architecture, showing a good agreement. Magnetic nanoparticles have attracted considerable interest in recent years due to possible applications in high density data storage technology. Requirements are a well defined and localized magnetic switching behavior and a large thermal stability in zero fields. The thermal stability of [Co/Pt]N multilayers with different numbers of repeats (N), deposited on nanospheres is studied by magnetic viscosity measurements. The magnetic activation volume, representing the effect of thermal activation on the switching process, is estimated. It is found that the activation volume is much smaller than the volume of the nanosphere and almost independent of the number of bilayers supporting an inhomogeneous magnetization reversal process.
|
2 |
Domain structure and magnetization processes of complex magnetic multilayersBran, Cristina 21 April 2010 (has links)
The magnetization processes of antiferromagnetically (AF) coupled Co/Pt multilayers on extended substrates and of Co/Pd multilayers deposited on arrays of 58 nm spheres are investigated via magnetic force microscopy at room temperature by imaging the domain configuration in magnetic fields. Adding AF exchange to such perpendicular anisotropy systems changes the typical energy balance that controls magnetic band domain formation, thus resulting in two competing reversal modes for the system. In the ferromagnetic (FM) dominated regime the magnetization forms FM band domains, vertically correlated. By applying a magnetic field, a transition from band to bubble domains is observed. In the AF-exchange dominated regime, by applying a field or varying the temperature it is possible to alter the magnetic correlation from horizontal (AF state) to vertical (FM state) via the formation of specific multidomain states, called metamagnetic domains. A theoretical model, developed for complex multilayers is applied to the experimentally studied multilayer architecture, showing a good agreement. Magnetic nanoparticles have attracted considerable interest in recent years due to possible applications in high density data storage technology. Requirements are a well defined and localized magnetic switching behavior and a large thermal stability in zero fields. The thermal stability of [Co/Pt]N multilayers with different numbers of repeats (N), deposited on nanospheres is studied by magnetic viscosity measurements. The magnetic activation volume, representing the effect of thermal activation on the switching process, is estimated. It is found that the activation volume is much smaller than the volume of the nanosphere and almost independent of the number of bilayers supporting an inhomogeneous magnetization reversal process.
|
Page generated in 0.0616 seconds