• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advancements in Spin Wave Devices for Next-Generation Radio Frequency Technology

Yiyang Feng (16626270) 25 July 2023 (has links)
<p>The ferrimagnetic electrical insulator yttrium iron garnet (YIG) has been proved a promising magnonic platform that allows for a variety of application within microwave fre- quency range. This dissertation focuses on the development of novel spin wave resonators and filters for next-generation radio frequency technology.</p> <p>Chapter 1 begins with an introduction to modern radio frequency communication tech- nology and motivation of our research on novel radio frequency devices.</p> <p>Chapter 2 discusses about the properties of yttrium iron garnet (YIG) thin film platform and theory of magnetostatic waves (MSW) within the magnetic thin film system. Three different types of magnetostatic wave modes, known as magnetostatic forward volume wave (MSFVW), magnetostatic backward volume waves (MSBVW) and magnetostatic surface wave (MSSW), are illustrated in this section. They have very distinct dispersion relations and require different transduction technology, which leads to disparate designs for devices utilizing different modes. The damping mechanism and linewidth of the magnetostatic modes will also be discussed in this chapter.</p> <p>Chapter 3 will showcase a new YIG-on-Si platform created using novel YIG bonding technology and the first ever on-chip MSFVW hairpin resonator on the YIG-on-Si platform. In the first part, we would like to show finite element analysis of YIG-on-Si MSFVW hairpin resonator and prove the capability of the hairpin transducer incorporated with YIG thin film to yield lower self-inductance and stronger excitation field. These unique properties are beneficial for generating high coupling between magnon and microwave domains. In the following sections, the bonding technology essential for creation of YIG-on-Si platform and key fabrication technology of hairpin devices are explained in detailed. With well defined fabrication process established, we will demonstrate that the hairpin magnetostatic wave resonator obtained through the process is magnetically tunable with a high coupling efficiency over 50%. An out-of-plane Z-directional tunable magnetic field results in forward volume spin-wave resonance with frequency in the 5G band. This technology enables us to build on-chip devices of desirable high coupling and magnetic tuning on the new YIG-on-Insulator platform and provides possibility of magnetic tuning and band-pass filter at radio-frequency range.</p> <p>Chapter 4 demonstrates a planar monolithic yttrium iron garnet (YIG) Chebyshev bandstop filter on traditional gadolinium gallium garnet (GGG) substrate with tunable frequency, low insertion loss and high rejection. This filter is created in YIG micro-machining technol- ogy that allows direct placement of metal transducers on YIG for strong spin-wave coupling. With an out-of-plane 3900 Oe bias field, the bandstop filter exhibits 55 dB maximum stop- band rejection at a center frequency of 6 GHz, with 2 dB passband insertion loss and 37.8 dBm passband <strong>IIP3</strong>. By applying different bias fields, the stopband center frequency is tuned from 4 GHz to 8 GHz while maintaining more than 30 dB rejection. Incorporated with proper design of tunable compact electromagnet, this new filter design can provide attenuation of spurs appearing across the 5G and X-band spectrum.</p> <p>In chapter 5, we will explore the properties of YIG thin-film materials in depth. Both YIG-on-Si and YIG-on-GGG platform under different conditions will be examined. Results of X-ray diffraction (XRD), ferromagnetic resonance (FMR), scanning tunneling microscope (STM) on the YIG thin films will be presented. Those results will cast light onto the study of limiting factors of our YIG-on-Si and YIG-on-GGG devices.</p>
2

Métamatériaux Electromagnétiques - Des Cristaux Photoniques aux Composites à Indice Négatif

Căbuz, Alexandru Ioan 19 June 2007 (has links) (PDF)
Composite metamaterials are periodic metal-dielectric structures operating at wavelengths larger than the structure period. If properly designed these structures behave as homogeneous media described by effective permittivity and permeability parameters. These effective parameters can be designed to take values in domains that are not available in naturally occurring media; notably it is possible to design composite metamaterials with simultaneously negative permittivity and permeability, or, in other words, with a negative refractive index. However, in many experimental or numerical studies it is far from obvious that the use of a homogeneous model is justified for a given structure at a given wavelength. This issue is often glossed over in the literature. <br />In this work I take a detailed look at the fundamental assumptions on which effective medium models rely and put forward a method for determining frequency domains where a given structure may or may not be accurately described by homogeneous effective medium parameters. This work opens the door to a more detailed understanding of the transition between homogeneous and inhomogeneous behavior in composite metamaterials, in particular by introducing the novel notions of custom made effective medium model, and of meta-photonic crystal.

Page generated in 0.0675 seconds