• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Propriedades eletrônicas e magnéticas de moléculas solvatadas / Electronic and magnetic properties of solvated molecules

Gester, Rodrigo do Monte 28 September 2012 (has links)
Ressonância magnética nuclear é particularmente útil na caracterização de síntese molecular. Quase todos os compostos moleculares de interesse contêm átomos de nitrogênio e oxigênio em sua estrutura. Como esses elementos químicos costumam desempenhar funções estratégicas em reações e interações intra e intermoleculares, seus espectros NMR têm particular interesse. Com foco na blindagem magnética nuclear e no acoplamento entre spins nucleares, investigamos a dependência dessas constantes magnéticas com relação ao meio. A polarização eletrônica e relaxação geométrica do soluto, devido à presença do solvente, foram sistematicamente consideradas utilizando um tratamento sequencial QM/MM. Nossas observações gerais mostram que efeitos de relaxação de geometria mediados pelo meio têm pouca influência sobre o mecanismo da blindagem magnética nuclear, pelo menos quanto aos sistemas aqui investigados. Em contrapartida, os efeitos da polarização eletrônica são cruciais sobre essa propriedade molecular. Para o nitrogênio em piridina, amônia e formamida, por exemplo, as contribuições isoladas provenientes da relaxação geométrica são da ordem de 1,2 ppm. Note-se que este efeito é muito pequeno se considerarmos que com frequência são observados desvios gás-líquido da ordem de -26 ppm para o nitrogênio. Sobre o oxigênio, esses efeitos podem chegar até 100 ppm. Assim, é crucial entender as origens desses efeitos se desejamos utilizar corretamente espectroscopia RMN em caracterização molecular. Relevantes contribuições para a blindagem magnética têm origens em interações específicas entre soluto e solvente, como ligações de hidrogênio, as quais apenas podem ser isoladas e quantificadas através de modelagem molecular. Sistematicamente constatamos que a blindagem magnética é drasticamente afetada pelo caráter doador ou aceitador do sítio atômico envolvido em ligações de hidrogênio. Com respeito ao nitrogênio, nossos resultados indicam que o comportamento aceitador de hidrogênio de um elemento é responsável por um desvio gás-líquido positivo, enquanto que o caráter doador causa um desvio negativo. Nossas investigações também mostram que a blindagem magnética nuclear é independente com relação à hibridização do nitrogênio e oxigênio, indicando que as contribuições principais têm origens em interações específicas soluto-solvente, as quais devem ser corretamente modeladas. Investigamos sistematicamente os efeitos do solvente sobre o acoplamento indireto entre spins nucleares em amônia líquida. Embora a polarização do soluto seja realmente importante, para essa propriedade há outras contribuições fundamentais. Sem considerar efeitos de geometria, calculamos o acoplamento ANTPOT. 1 J(N-H) como -67,8 Hz. Após incluir esses efeitos, conseguimos uma descrição teórica mais apurada, obtendo um acoplamento de -63,9 Hz. Esses resultados mostram que efeitos de relaxação geométrica mediado pelo meio têm grande influência sobre o acoplamento indireto entre spins nucleares. / Nuclear magnetic resonance is helpful on molecular characterization. Most organic molecular compounds of interest contain nitrogen or oxygen atoms which play strategic functions in chemical reactions and molecular interactions. The NMR technique provides local atomic scale information on molecular properties, thus the study of nuclear magnetic properties of these elements in molecules is of particular interest. Focusing on nuclear magnetic shielding and spin-spin coupling constants we investigated the dependence of these magnetic constants with respect to the medium. Electronic polarization and geometry relaxation effects due to solvent were systematically studied. Our general findings indicate that geometry contributions are negligible in understanding the variation of shielding constants of the investigated systems, but polarization effects are crucial for this molecular property. On nitrogen in pyridine, ammonia and formamide, for instance, isolated contributions from geometry relaxation to shielding constants are around 1,2 ppm. Nitrogen shielding constants are very sensitive to the medium, where solvent effects around -26 ppm are often observed. On oxygen-17 magnetic shielding, the solvent effects can easily reach 100 ppm. It is crucial to understand the origins of these effects if one desires to correctly use NMR spectroscopy for molecular characterization. Our investigations also show that magnetic shielding constants are totally independent of the nitrogen or oxygen hybridization, which indicated that the main contributions arise from solute-solvent interactions. Relevant contributions to shielding constants come from specific solute-solvent interactions like hydrogen-bonds, which can only be quantified by explicit molecular modeling, and we observed that this property has a very strong dependence on the donor or acceptor character of the atomic site involved in hydrogen-bonding interactions. On nitrogen, the acceptor behavior is responsible by the positive gas-liquid shift in shielding constants, while the donor character causes positive shift. We systematically investigated the solvent effects on indirect spin-spin coupling constants of liquid ammonia. Solute polarization is very important, but there are other fundamental contributions to this property. Without including geometry effects we calculated the 1J (N-H) coupling to be -67,8 Hz. After accounting for the solute geometry relaxation we improved the theoretical prediction obtaining the coupling constant value of -63,9 Hz. These results show that geometry relaxation has drastic influence on indirect spin-spin coupling constants.
12

Développement de formulations intégrales de volume en magnétostatique / Development of magnetostatic volume integral formulations

Le Van, Vinh 14 December 2015 (has links)
Ces dernières années, la Méthode Intégrale de Volume (MIV) a reçu une attention particulière pour lamodélisation des problèmes électromagnétiques en basse fréquence. Son intérêt principal est l’absencedu maillage de la région air, ce qui rend la méthode légère et rapide. Associée aux méthodes decompression matricielle la MIV devient aujourd'hui une alternative compétitive à la méthode deséléments finis pour la modélisation de dispositifs électromagnétiques ayant un volume d'airprépondérant.Ce rapport porte sur le développement de deux formulations intégrales de volume pour la résolution deproblèmes magnétostatiques avec prise en compte des matériaux non linéaires, des aimants, desbobines, des circuits magnétiques avec ou sans entrefer et des régions minces magnétiques. Lapremière est une formulation en flux de mailles indépendantes basée sur l'interpolation par éléments defacette. La deuxième est une formulation en potentiel vecteur magnétique basée sur l'interpolation paréléments d'arête. L'application de ces formulations permet d’une part d'obtenir des résultats précismême en présence d’un faible maillage et d’autre part de résoudre aisément des problèmes nonlinéaires. Des méthodes de calcul de la force magnétique globale ainsi que du flux magnétique dansles bobines ont été également mises en oeuvre. Les développements informatiques ont été réalisés dansla plateforme MIPSE et ont été validés sur des problèmes académiques ainsi que sur quelquesdispositifs industriels. / In recent years, the Volume Integral Method (VIM) has been received particular attention formodeling of low frequency electromagnetic problems. The main advantage of this method is thatinactive regions do not to be discretized, which makes it light and rapid. Associated with matrixcompression methods, the VIM is a competitive alternative to the finite element method for modelingelectromagnetic devices containing a predominant air volume.This PhD thesis focuses on the development of two volume integral formulations for solvingmagnetostatic problems, in the presence of nonlinear materials, magnets, coils, multiply connectedmagnetic regions, and the presence of magnetic shielding. The first one is a mesh magnetic fluxformulation based on the interpolation of facet elements and the second one is a magnetic vectorpotential formulation based on the interpolation of edge elements. The application of theseformulations provides accurate results even with coarse meshes and allows solving straightforwardnonlinear magnetostatic problems. Methods for computing global magnetic force and magnetic fluxthrough a coil were also implemented as part of this work. Developments performed in the MIPSEplatform were validated on academic case-tests as well as some industrial devices.
13

Propriedades eletrônicas e magnéticas de moléculas solvatadas / Electronic and magnetic properties of solvated molecules

Rodrigo do Monte Gester 28 September 2012 (has links)
Ressonância magnética nuclear é particularmente útil na caracterização de síntese molecular. Quase todos os compostos moleculares de interesse contêm átomos de nitrogênio e oxigênio em sua estrutura. Como esses elementos químicos costumam desempenhar funções estratégicas em reações e interações intra e intermoleculares, seus espectros NMR têm particular interesse. Com foco na blindagem magnética nuclear e no acoplamento entre spins nucleares, investigamos a dependência dessas constantes magnéticas com relação ao meio. A polarização eletrônica e relaxação geométrica do soluto, devido à presença do solvente, foram sistematicamente consideradas utilizando um tratamento sequencial QM/MM. Nossas observações gerais mostram que efeitos de relaxação de geometria mediados pelo meio têm pouca influência sobre o mecanismo da blindagem magnética nuclear, pelo menos quanto aos sistemas aqui investigados. Em contrapartida, os efeitos da polarização eletrônica são cruciais sobre essa propriedade molecular. Para o nitrogênio em piridina, amônia e formamida, por exemplo, as contribuições isoladas provenientes da relaxação geométrica são da ordem de 1,2 ppm. Note-se que este efeito é muito pequeno se considerarmos que com frequência são observados desvios gás-líquido da ordem de -26 ppm para o nitrogênio. Sobre o oxigênio, esses efeitos podem chegar até 100 ppm. Assim, é crucial entender as origens desses efeitos se desejamos utilizar corretamente espectroscopia RMN em caracterização molecular. Relevantes contribuições para a blindagem magnética têm origens em interações específicas entre soluto e solvente, como ligações de hidrogênio, as quais apenas podem ser isoladas e quantificadas através de modelagem molecular. Sistematicamente constatamos que a blindagem magnética é drasticamente afetada pelo caráter doador ou aceitador do sítio atômico envolvido em ligações de hidrogênio. Com respeito ao nitrogênio, nossos resultados indicam que o comportamento aceitador de hidrogênio de um elemento é responsável por um desvio gás-líquido positivo, enquanto que o caráter doador causa um desvio negativo. Nossas investigações também mostram que a blindagem magnética nuclear é independente com relação à hibridização do nitrogênio e oxigênio, indicando que as contribuições principais têm origens em interações específicas soluto-solvente, as quais devem ser corretamente modeladas. Investigamos sistematicamente os efeitos do solvente sobre o acoplamento indireto entre spins nucleares em amônia líquida. Embora a polarização do soluto seja realmente importante, para essa propriedade há outras contribuições fundamentais. Sem considerar efeitos de geometria, calculamos o acoplamento ANTPOT. 1 J(N-H) como -67,8 Hz. Após incluir esses efeitos, conseguimos uma descrição teórica mais apurada, obtendo um acoplamento de -63,9 Hz. Esses resultados mostram que efeitos de relaxação geométrica mediado pelo meio têm grande influência sobre o acoplamento indireto entre spins nucleares. / Nuclear magnetic resonance is helpful on molecular characterization. Most organic molecular compounds of interest contain nitrogen or oxygen atoms which play strategic functions in chemical reactions and molecular interactions. The NMR technique provides local atomic scale information on molecular properties, thus the study of nuclear magnetic properties of these elements in molecules is of particular interest. Focusing on nuclear magnetic shielding and spin-spin coupling constants we investigated the dependence of these magnetic constants with respect to the medium. Electronic polarization and geometry relaxation effects due to solvent were systematically studied. Our general findings indicate that geometry contributions are negligible in understanding the variation of shielding constants of the investigated systems, but polarization effects are crucial for this molecular property. On nitrogen in pyridine, ammonia and formamide, for instance, isolated contributions from geometry relaxation to shielding constants are around 1,2 ppm. Nitrogen shielding constants are very sensitive to the medium, where solvent effects around -26 ppm are often observed. On oxygen-17 magnetic shielding, the solvent effects can easily reach 100 ppm. It is crucial to understand the origins of these effects if one desires to correctly use NMR spectroscopy for molecular characterization. Our investigations also show that magnetic shielding constants are totally independent of the nitrogen or oxygen hybridization, which indicated that the main contributions arise from solute-solvent interactions. Relevant contributions to shielding constants come from specific solute-solvent interactions like hydrogen-bonds, which can only be quantified by explicit molecular modeling, and we observed that this property has a very strong dependence on the donor or acceptor character of the atomic site involved in hydrogen-bonding interactions. On nitrogen, the acceptor behavior is responsible by the positive gas-liquid shift in shielding constants, while the donor character causes positive shift. We systematically investigated the solvent effects on indirect spin-spin coupling constants of liquid ammonia. Solute polarization is very important, but there are other fundamental contributions to this property. Without including geometry effects we calculated the 1J (N-H) coupling to be -67,8 Hz. After accounting for the solute geometry relaxation we improved the theoretical prediction obtaining the coupling constant value of -63,9 Hz. These results show that geometry relaxation has drastic influence on indirect spin-spin coupling constants.
14

Substrate functionalization with functional particle patterns

Khan, Qaiser Ali 14 April 2022 (has links)
In this thesis, patterning methods to fabricate various functional particle patterns on substrates were developed, with the main aim of modifying the properties and functions of the substrates. Two classes of model substrates were selected; topographically patterned and smooth substrates. For the first model system, i.e., topographically patterned substrates, replication molding was used to topographically pattern substrates of different materials. The topographically patterned substrates, including TiO2, block-copolymer substrates (PS-b-P2VP and PS-b-P4VP), and microrings (TiO2 and Au), were then used to assemble silica (SiO2) microparticles for functional applications. By the assembly of microparticles on topographically patterned substrates, the wettability of the former could be reversibly switched from hydrophobic to hydrophilic. Moreover, a platform for the preparation of Janus particles by orthogonal functionalization of the top and bottom sides of microparticles assembled on topographically patterned substrates was developed. Clusters of superparamagnetic nanoparticles were stamped on the second class of model substrates, i.e., smooth silanized silicon substrates. A capillary stamping approach combined with an external permanent magnetic field or electromagnets was realized to print magnetic nanoparticle-based inks. In this way, ordered arrays of clusters of magnetic nanoparticles were produced.

Page generated in 0.0654 seconds