1 |
Computational study of proteins with paramagnetic NMR: Automatic assignments of spectral resonances, determination of protein-protein and protein-ligand complexes, and structure determination of proteinsChristophe Schmitz Unknown Date (has links)
Understanding biological phenomena at atomic resolution is one of the keys to modern drug design. In particular, knowledge of 3D structures of proteins and their interactions with other macromolecules are necessary for designing chemical compounds that modify biological processes. Conventional methods for protein structure determinations comprise X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. These techniques can also determine the binding mode of chemical compounds. Either technique can be slow and costly, making it highly relevant to explore alternative strategies. Paramagnetic NMR spectroscopy is emerging as such an alternative technique. In order to measure the paramagnetic effects, two NMR spectra are compared that have been measured with and without a bound paramagnetic metal ion. In particular, pseudocontact shifts (PCS) of nuclear spins are easily measured as the difference (in ppm) of the chemical shifts between the two spectra. PCSs provide long range and orientation dependent restraints, allowing positioning of the spin with respect to the magnetic susceptibility tensor anisotropy (Δχ-tensor) of the metal ion. In this thesis, I used the PCS effect to computationally extract information from NMR spectra. I developed (i) a tool (called Possum) to automatically assign diamagnetic and paramagnetic spectra of the methyl groups of amino acid side chains, given structural information of the protein studied and prior knowledge of the Δχ-tensor; (ii) I designed a comprehensive software package (called Numbat) to extract Δχ-tensor parameters from assigned PCS values and the available 3D structure; and (iii) I incorporated PCS-based restraints into the protein structure prediction software CS-ROSETTA and demonstrated that this combination (PCS-ROSETTA) presents a significant improvement for de novo structure determination. The three projects serve different purposes at different stages of protein NMR studies. They could be combined in the following manner: Starting from assigned backbone PCSs, PCS-Rosetta could be used to determine the 3D structure of the protein. Possum can then be used to automatically assign the NMR resonances of the methyl groups using PCSs. Finally, Numbat can be used to fit improved Δχ-tensors to all the PCS data, analyze the quality of the Δχ-tensors and identify possible wrong assignments. Iterative repetition of this protocol would give a 3D structural model of the protein with a minimum of data. Alternatively, the Δχ-tensor parameters and PCSs could be used as input for a traditional software package such as Xplor-NIH to compute a 3D structure of the protein.
|
2 |
Computational study of proteins with paramagnetic NMR: Automatic assignments of spectral resonances, determination of protein-protein and protein-ligand complexes, and structure determination of proteinsChristophe Schmitz Unknown Date (has links)
Understanding biological phenomena at atomic resolution is one of the keys to modern drug design. In particular, knowledge of 3D structures of proteins and their interactions with other macromolecules are necessary for designing chemical compounds that modify biological processes. Conventional methods for protein structure determinations comprise X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. These techniques can also determine the binding mode of chemical compounds. Either technique can be slow and costly, making it highly relevant to explore alternative strategies. Paramagnetic NMR spectroscopy is emerging as such an alternative technique. In order to measure the paramagnetic effects, two NMR spectra are compared that have been measured with and without a bound paramagnetic metal ion. In particular, pseudocontact shifts (PCS) of nuclear spins are easily measured as the difference (in ppm) of the chemical shifts between the two spectra. PCSs provide long range and orientation dependent restraints, allowing positioning of the spin with respect to the magnetic susceptibility tensor anisotropy (Δχ-tensor) of the metal ion. In this thesis, I used the PCS effect to computationally extract information from NMR spectra. I developed (i) a tool (called Possum) to automatically assign diamagnetic and paramagnetic spectra of the methyl groups of amino acid side chains, given structural information of the protein studied and prior knowledge of the Δχ-tensor; (ii) I designed a comprehensive software package (called Numbat) to extract Δχ-tensor parameters from assigned PCS values and the available 3D structure; and (iii) I incorporated PCS-based restraints into the protein structure prediction software CS-ROSETTA and demonstrated that this combination (PCS-ROSETTA) presents a significant improvement for de novo structure determination. The three projects serve different purposes at different stages of protein NMR studies. They could be combined in the following manner: Starting from assigned backbone PCSs, PCS-Rosetta could be used to determine the 3D structure of the protein. Possum can then be used to automatically assign the NMR resonances of the methyl groups using PCSs. Finally, Numbat can be used to fit improved Δχ-tensors to all the PCS data, analyze the quality of the Δχ-tensors and identify possible wrong assignments. Iterative repetition of this protocol would give a 3D structural model of the protein with a minimum of data. Alternatively, the Δχ-tensor parameters and PCSs could be used as input for a traditional software package such as Xplor-NIH to compute a 3D structure of the protein.
|
3 |
Etudes des relations magnéto-structurales dans les composés à base moléculaire par diffusion des neutrons : des molécules individuelles aux nanoparticules / Studies of magneto-structural relationships in molecule-based compounds by neutron diffusion : from individual molecules to nanoparticlesRidier, Karl 17 November 2014 (has links)
Un des enjeux majeurs dans le domaine du magnétisme moléculaire est de mieux comprendre et prévoir, dans les composés à base moléculaire, les corrélations qui existent entre les propriétés structurales (modulables à partir de méthodes de synthèse de type « bottom-up ») et les propriétés magnétiques. En particulier, la compréhension et la maîtrise de l’anisotropie magnétique à l’échelle locale est primordiale, notamment en vue de concevoir des molécules-aimants avec de plus hautes températures de blocage. Dans ce contexte, ce travail de thèse s’organise autour de deux grands axes. La première partie se concentre sur la détermination et la caractérisation de l’anisotropie magnétique locale dans des complexes moléculaires d’ions de transition de faible nucléarité. La diffraction de neutrons polarisés (PND) nous a permis, pour la première fois, de mettre clairement en évidence le tenseur de susceptibilité magnétique locale dans un complexe moléculaire mononucléaire de Fe3+ Bas-Spin ainsi que dans deux complexes, mononucléaire et dinucléaire, de Co2+ Haut-Spin. Cette approche novatrice mène à l’établissement de relations magnéto-structurales claires et directes, en reliant les directions magnétiques locales propres à l’environnement de coordination des ions métalliques et en particulier aux axes locaux de distorsion. Nous avons également mené l’étude originale d’un complexe à transition de spin thermo-induite de Mn3+ par diffusion inélastique de neutrons (INS) dans les deux phases Haut-Spin (HS) et Bas-Spin (BS). Cette étude nous a conduits à la proposition d’un modèle d’hamiltonien de spin anisotrope dans les deux états HS et BS, en relation avec la structure du complexe. Dans une seconde partie plus exploratoire de la thèse, nous avons mené une étude complète des propriétés structurales et magnétiques de nanoparticules ferromagnétiques d’analogue du bleu de Prusse CsNiCr, par diffusion de neutrons aux petits angles (SANS). Les effets de taille, d’organisation et de concentration sur leurs propriétés superparamagnétiques ont ainsi été clairement mis en évidence. En particulier, nous avons mis en exergue, pour les particules de plus petite taille (5 nm de diamètre), une contribution magnétique qui résulte de la manifestation d’un phénomène collectif, tandis que celles de plus grande taille (28 nm de diamètre) apparaissent être dans un état complètement multidomaine. / One of the major issues in the field of molecular magnetism is to better understand and predict the correlations between the structural properties of molecule-based compounds and their magnetic properties, all of which may be tunable using “bottom-up” synthesis methods. In particular, the understanding and control of the magnetic anisotropy at the atomic scale is essential, especially with the aim to design Single-Molecule Magnets (SMM) with higher blocking temperatures. In this context, this thesis work is focused on two mains subjects. The first part deals with the determination and the characterization of the local magnetic anisotropy in low-nuclearity molecular complexes based on transition ions. Polarised neutron diffraction (PND) allows us, for the first time, to directly access the local susceptibility tensor in a Low-Spin Fe3+ mononuclear complex as well as in two, mononuclear and dinuclear, High-Spin Co2+ complexes. This innovative approach leads to the establishment of unique and direct magneto-structural correlations, by relating the local magnetic principal directions with the coordination environment of the metallic ions and, in particular, with the local distortion axes. We have also carried out an original investigation by inelastic neutron scattering (INS) of a Mn3+ thermo-induced spin-transition compound in both High-Spin (HS) and Low-Spin (LS) states. On the basis of this study, we were able to propose an anisotropic spin-Hamiltonian model in both HS and LS phases, and their relationships with the structure of the molecule are discussed. In a second more exploratory part of the thesis, we have carried out by small-angle neutron scattering (SANS) a complete study of the structural and magnetic properties of Prussian blue analogues (PBA) ferromagnetic nanoparticles CsNiCr. The effects of size, organization and concentration on their superparamagnetic properties have been clearly highlighted. In particular, a strong magnetic contribution has been observed for the smallest particles (5 nm diameter) which results from the manifestation of a collective process, while the biggest (28 nm diameter) appear to be in a multi-domain state.
|
Page generated in 0.0846 seconds