• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetic Microstructure and Actuation Dynamics of NiMnGa Magnetic Shape Memory Materials

Lai, Yiu Wai 27 August 2009 (has links) (PDF)
Magnetic shape memory (MSM) materials are a new class of smart materials which exhibit shape deformation under the influence of an external magnetic field. They are interesting for various types of applications, including actuators, displacement/force sensors, and motion dampers. Due to the huge strain and the magnetic field-driven nature, MSM materials show definite advantages over other smart materials, e.g. conventional thermal shape memory materials, in terms of displacement and speed. The principle behind the magnetic field induced strain (MFIS) is the strong coupling between magnetization and lattice structure. The investigation of both static and dynamic magnetic domain structures in MSM materials is a key step in optimizing the properties for future possible devices. In this work, optical polarization microscopy is applied to investigate the twin boundary and magnetic domain wall motion in bulk NiMnGa single crystals. Surface magnetic domain patterns on adjacent sides of bulk crystals are revealed for the first time providing comprehensive information about the domain arrangement inside the bulk and at the twin boundary. The tilting of the easy axis with respect to the sample surface determines the preferable domain size and leads to spike domain formation on the surface. Out-of-plane surface domains extend into the bulk within a single variant, while a twin boundary mirrors the domain pattern from adjacent variants. Furthermore, magnetic domain evolution during twin boundary motion is observed. The partial absence of domain wall motion throughout the process contradicts currently proposed models. The magnetic state alternates along a moving twin boundary. With the abrupt nucleation of the second variant this leads to the formation of sections of magnetically highly charged head-on domain structures at the twin boundaries. On the other hand, a dynamic actuation experimental setup, which is capable to provide high magnetic fields in a wide range of frequency, was developed in the course of this study. The observation of reversible twin boundary motion up to 600 Hz exhibits the dependence of strain, hysteresis, and twin boundary velocity on the actuation speed. MFIS increases with frequency, while the onset field is similar in all observed cases. Twin boundary mobility enhancement by fast twin boundary motion is proposed to explain the increase in MFIS. The twin boundary velocity is shown to be inversely proportional to the twin boundary density. No limit of twin boundary velocity is observed in the investigated frequency range.
2

Magnetic Microstructure and Actuation Dynamics of NiMnGa Magnetic Shape Memory Materials

Lai, Yiu Wai 23 July 2009 (has links)
Magnetic shape memory (MSM) materials are a new class of smart materials which exhibit shape deformation under the influence of an external magnetic field. They are interesting for various types of applications, including actuators, displacement/force sensors, and motion dampers. Due to the huge strain and the magnetic field-driven nature, MSM materials show definite advantages over other smart materials, e.g. conventional thermal shape memory materials, in terms of displacement and speed. The principle behind the magnetic field induced strain (MFIS) is the strong coupling between magnetization and lattice structure. The investigation of both static and dynamic magnetic domain structures in MSM materials is a key step in optimizing the properties for future possible devices. In this work, optical polarization microscopy is applied to investigate the twin boundary and magnetic domain wall motion in bulk NiMnGa single crystals. Surface magnetic domain patterns on adjacent sides of bulk crystals are revealed for the first time providing comprehensive information about the domain arrangement inside the bulk and at the twin boundary. The tilting of the easy axis with respect to the sample surface determines the preferable domain size and leads to spike domain formation on the surface. Out-of-plane surface domains extend into the bulk within a single variant, while a twin boundary mirrors the domain pattern from adjacent variants. Furthermore, magnetic domain evolution during twin boundary motion is observed. The partial absence of domain wall motion throughout the process contradicts currently proposed models. The magnetic state alternates along a moving twin boundary. With the abrupt nucleation of the second variant this leads to the formation of sections of magnetically highly charged head-on domain structures at the twin boundaries. On the other hand, a dynamic actuation experimental setup, which is capable to provide high magnetic fields in a wide range of frequency, was developed in the course of this study. The observation of reversible twin boundary motion up to 600 Hz exhibits the dependence of strain, hysteresis, and twin boundary velocity on the actuation speed. MFIS increases with frequency, while the onset field is similar in all observed cases. Twin boundary mobility enhancement by fast twin boundary motion is proposed to explain the increase in MFIS. The twin boundary velocity is shown to be inversely proportional to the twin boundary density. No limit of twin boundary velocity is observed in the investigated frequency range.
3

Entwurfsmethodik zur Auslegung von Aktoren basierend auf magnetischen Formgedächtnislegierungen

Titsch, Christian 06 March 2024 (has links)
Die Geschichte der magnetischen Formgedächtnislegierungen (MFGL) ist im Kontext der Materialwissenschaften noch recht jung. In den letzten 30 Jahren sind dabei viele Erkenntnisse in der Forschung gewonnen worden. Der industrielle Durchbruch wiederum ist mit diesem Material noch nicht gelungen. Die existierenden Publikationen zur Auslegung von magnetischen Formgedächtnis- (MFG)-Aktoren sind in dieser Arbeit daher aufbereitet und systematisiert worden. Dabei stellt insbesondere die thermische Auslegung eine Wissenslücke dar, die entsprechende Grundlagenuntersuchungen erfordert. Aufbauend auf dieser Wissensbasis ist eine spezifische Entwurfsmethodik für MFGL entwickelt worden. Die Dimensionierung erfolgt zunächst mit analytischen Gleichungen, um eine zeit- und kosteneffiziente Vorgehensweise für Entwicklungsingenieure zu gewährleisten. Finite-Elemente-Methode-(FEM)-Software wird erst im zweiten Schritt zur Prüfung oder Optimierung eingesetzt. Außerdem kann mittels dieser Methodik auf unwirtschaftliche Iterationsschleifen und „trial and error“-Ansätze verzichtet werden. Abschließend ist die Methodik anhand eines Anwendungsszenarios verifiziert worden. Die abgeleiteten Anforderungen konnten dabei ohne Nachbesserungen oder weitere Iterationsschleifen erfüllt werden, so dass die Methodik eine strukturierte und erfolgreiche Entwicklung unterstützt hat.:1 Einleitung 2 Stand der Wissenschaft und Technik 3 Grundlagenuntersuchungen 4 Entwurfsmethodik für MFG-Aktoren 5 Zusammenfassung und Ausblick
4

Entwurfsgerechte Charakterisierung und Modellierung magnetischer Formgedächtnislegierungen für Antriebe

Ehle, Fabian 25 May 2023 (has links)
Magnetische Formgedächtnislegierungen (MSM-Legierungen) weisen im Vergleich zu anderen Festkörperwandlern und konventionellen elektromagnetischen Wandlerprinzipien unikale Kopplungseigenschaften auf. Dies motiviert ihre Anwendung in kompakten und schnellschaltenden Antrieben. Aufgrund der Kompliziertheit ihres Kopplungsverhaltens ist jedoch ein modellbasierter Entwurf unumgänglich. Die vorliegende Arbeit widmet sich der Beschreibung einer Unterklasse von MSM-Antrieben mit eisenbehafteten Magnetkreisen und engen Luftspalten durch eine Kombination von Messung und Modell. Ziel ist dabei die Beantwortung anwendungsrelevanter Fragestellungen im Antriebsentwurf. Die Grundlage dafür bildet die heuristische Definition eines auf verallgemeinerten Kirchhoffschen Netzwerken (Netzwerkmodellen) basierenden Ersatzmodells des MSM-Elements samt umgebendem Luftspalt. Die das Verhalten des Ersatzmodells beschreibenden magnetischen Größen werden durch ein neuartiges und im Rahmen der Arbeit entwickeltes Messverfahren ermittelt. Ein Prüfstand setzt dieses Messverfahren um und ermöglicht eine simultane magnetische und magnetomechanische Charakterisierung von MSM-Elementen unter Kraft- oder Wegvorgabe. Eine empirische Validierung der gemessenen Zusammenhänge, auch anhand thermodynamischer Gesichtspunkte, weist die Plausibilität der das Ersatzmodell beschreibenden Zusammenhänge nach. Diese Ergebnisse motivieren die Entwicklung eines Netzwerkmodells, das die hysteresebehaftete magnetomechanische Kopplung innerhalb des Ersatzmodells thermodynamisch korrekt berücksichtigt. Mithilfe des Modells gelingt es, das experimentell bestimmte integrale magnetomechanische Verhalten des MSM-Elements samt umgebendem Luftspalt in wesentlichen Aspekten vorherzusagen. / Magnetic shape memory (MSM) alloys are considered promising active materials for compact electromagnetic drives due to their strong magneto-mechanical coupling. However, the latter is associated with a strong nonlinearity and a distinct hysteresis making a model-based design indispensable. The present work describes the behavior of a subclass of MSM drives with iron-core and small air gaps by means of a combination of model and experiment. Heuristically, an equivalent lumped-element model considering the MSM element and the surrounding air gap is proposed. An associated novel magnetic measurement procedure determines the quantities describing the behavior of this equivalent model. A test setup implements the measurement procedure and allows for a simultaneous magnetic and magneto-mechanical characterization either under constant load or under constant displacement. An empiric validation, also with regard to thermodynamic aspects, indicates the plausibility of the collected data describing the simplified equivalent model. These results motivate the development of a novel lumped-element model considering the hysteretic magneto-mechanical coupling of the equivalent model in a thermodynamically consistent way. Its validation by means of various magneto-mechanical experiments shows that the model is able to predict the essential magnetic and magneto-mechanical behavior of the MSM element and the surrounding air gap with sufficient accuracy, making it appropriate for system design.

Page generated in 0.0794 seconds