• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 124
  • 55
  • 25
  • 13
  • 10
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 515
  • 176
  • 116
  • 97
  • 67
  • 64
  • 58
  • 56
  • 47
  • 41
  • 41
  • 40
  • 39
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

FABRICATION AND CHARACTERIZATION OF MOLECULAR SPINTRONICS DEVICES

Tyagi, Pawan 01 January 2008 (has links)
Fabrication of molecular spin devices with ferromagnetic electrodes coupled with a high spin molecule is an important challenge. This doctoral study concentrated on realizing a novel molecular spin device by the bridging of magnetic molecules between two ferromagnetic metal layers of a ferromagnetic-insulator-ferromagnetic tunnel junction on its exposed pattern edges. At the exposed sides, distance between the two metal electrodes is equal to the insulator film thickness; insulator film thickness can be precisely controlled to match the length of a target molecule. Photolithography and thin-film deposition were utilized to produce a series of tunnel junctions based on molecular electrodes of multilayer edge molecular electrodes (MEME) for the first time. In order to make a microscopic tunnel junction with low leakage current to observe the effect of ~10,000 molecules bridged on the exposed edge of a MEME tunnel barrier, growth conditions were optimized; stability of a ~2nm alumina insulator depended on its ability to withstand process-induced mechanical stresses. The conduction mechanism was primarily 1) tunneling from metal electrode to oranometalic core by tunneling through alkane tether that acts as a tunnel barrier 2) rapid electron transfer within the oranometalic Ni-CN-Fe cube and 3) tunneling through alkane tether to the other electrode. Well defined spin-states in the oranometalic Ni-CN-Fe cube would determine electron spin-conduction and possibly provide a mechanism for coupling. MEME with Co/NiFe/AlOx/NiFe configurations exhibited dramatic changes in the transport and magnetic properties after the bridging of oranometalic molecular clusters with S=6 spin state. The molecular cluster produced a strong antiferromagnetic coupling between two ferromagnetic electrodes to the extent, with a lower bound of 20 erg/cm,2 that properties of individual magnetic layers changed significantly at RT. Magnetization, ferromagnetic resonance and magnetic force microscopy studies were performed. Transport studies of this configuration of MEME exhibited molecule-induced current suppression by ~6 orders by blocking both molecular channels and tunneling between metal leads in the planar 25μm2 tunnel junction area. A variety of control experiments were performed to validate the current suppression observation, especially critical due to observed corrosion in electrochemical functionalization step. The spin devices were found to be sensitive to light radiation, temperature and magnetic fields. Along with the study of molecular spin devices, several interesting ideas such as ~9% energy efficient ultrathin TaOx based photocell, simplified version of MEME fabrication, and chemical switching were realized. This doctoral study heralds a novel molecular spin device fabrication scheme; these molecular electrodes allow the reliable study of molecular components in molecular transport.
182

Complex Oxide Photonic Crystals

Dzibrou, Dzmitry January 2009 (has links)
<p>Microphotonics has been offering a body of ideas to prospective applicationsin optics. Among those, the concept of photonic integrated circuits (PIC’s) has recently spurred a substantial excitement into the scientific community. Relisation of the PIC’s becomes feasible as the size shrinkage of the optical elements is accomplished. The elements based on photonic crystals (PCs) represent promising candidacy for manufacture of PIC’s. This thesis is devoted to tailoring of optical properties and advanced modelling of two types of photonic crystals: (Bi<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>/Sm<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub>)<em><sup>m</sup></em> and (TiO<sub>2</sub>/Er<sub>2</sub>O<sub>3</sub>)<em><sup>m</sup></em> potentially applicable in the role optical isolators and optical amplifiers, respectively. Deposition conditions of titanium dioxide were first investigated to maximise refractive index and minimise absorption as well as surface roughness of titania films. It was done employing three routines: deposition at elevated substrate temperatures, regular annealing in thermodynamically equilibrium conditions and rapid thermal annealing (RTA). RTA at 500 <sup>o</sup>C was shown to provide the best optical performance giving a refractive index of 2.53, an absorption coefficient of 404 cm<sup>−1</sup> and a root-mean-square surface roughness of 0.6 nm. Advanced modelling of transmittance and Faraday rotation for the PCs (Bi<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>/Sm<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub>)<sup>5</sup> and (TiO<sub>2</sub>/Er<sub>2</sub>O<sub>3</sub>)<sup>6</sup> was done using the 4 × 4 matrix formalism of Višňovský. The simulations for the constituent materials in the forms of single films were performed using the Swanepoel and Višňovský formulae. This enabled generation of the dispersion relations for diagonal and off-diagonal elements of the permittivity tensors relating to the materials. These dispersion relations were utilised to produce dispersion relations for complex refractive indices of the materials. Integration of the complex refractive indices into the 4 × 4 matrix formalism allowed computation of transmittance and Faraday rotation of the PCs. The simulation results were found to be in a good agreement with the experimental ones proving such a simulation approach is an excellent means of engineering PCs.</p>
183

Exploring the vibration control potential of magneto-sensitive rubber

Blom, Peter January 2005 (has links)
<p>Two new aspects of the dynamic behaviour in the audible frequency range of magneto-sensitive (MS) rubber are highlighted: the existence of an amplitude dependence of the shear modulus—referred to as the Fletcher–Gent effect—for even small displacements, and the appearance of large MS effects. These results have been obtained experimentally and are subsequently used to model two examples of magneto-sensitive rubber isolators to show how by means of MS rubber they can be improved. The first model calculates the transfer stiffness of a torsionally excited isolator and the second one the energy flow into the foundation for a bushing inserted between a vibrating mass and an infinite plate. In both examples notable improvements in isolation can be obtained</p>
184

High resolution resonant Raman scattering in InP and GaAs

Kernohan, Edward Thomas Mark January 1996 (has links)
No description available.
185

The magneto-optical properties of semiconductors and the band structure of gallium nitride

Shields, Philip Aldam January 2001 (has links)
No description available.
186

Rotational magneto-acousto-electric tomography (MAET): theory and experimental validation

Kunyansky, L, Ingram, C P, Witte, R S 21 April 2017 (has links)
We present a novel two-dimensional (2D) MAET scanner, with a rotating object of interest and two fixed pairs of electrodes. Such an acquisition scheme, with our novel reconstruction techniques, recovers the boundaries of the regions of constant conductivity uniformly well, regardless of their orientation. We also present a general image reconstruction algorithm for the 2D MAET in a circular chamber with point-like electrodes immersed into the saline surrounding the object. An alternative linearized reconstruction procedure is developed, suitable for recovering the material interfaces (boundaries) when a non-ideal piezoelectric transducer is used for acoustic excitation. The work of the scanner and the linearized reconstruction algorithm is demonstrated using several phantoms made of high-contrast materials and a biological sample.
187

Magneto-Optical and Chaotic Electrical Properties of n-InSb

Song, Xiang-Ning 12 1900 (has links)
This thesis investigation concerns the optical and nonlinear electrical properties of n-InSb. Two specific areas have been studied. First is the magneto-optical study of magneto-donors, and second is the nonlinear dynamic study of nonlinear and chaotic oscillations in InSb. The magneto-optical study of InSb provides a physical picture of the magneto-donor levels, which has an important impact on the physical model of nonlinear and chaotic oscillations. Thus, the subjects discussed in this thesis connect the discipline of semiconductor physics with the field of nonlinear dynamics.
188

Theoretical Investigation on Propagation and Coupling of Nonreciprocal Electromagnetic Surface Waves

Liu, Kexin January 2016 (has links)
This thesis aims at revealing the fundamental guiding and coupling properties of nonreciprocal electromagnetic surface waves on magneto-optical or gyromagnetic media and designing novel applications based on the properties. We introduce the background in the first chapter. We then describe the concept of nonreciprocity and the main calculation method in the second chapter. In the third chapter, we show that one-way waves can be sustained at the edge of a gyromagnetic photonic crystal slab under an external magnetic field. We also investigate the coupling between two parallel one-way waveguides. We reveal the condition for effective co-directional and contra-directional coupling. We also notice that the contra-directional coupling is related to the concept of a “trapped rainbow”. In the fourth chapter, we address the concept of a “trapped rainbow”. It aims at trapping different frequency components of the electromagnetic wave packet at different positions in space permanently. In previous structures, the entire incident wave is reflected due to the strong contra-directional coupling between forward and backward modes. To overcome this difficulty, we show that utilizing nonreciprocal waveguides under a tapered external magnetic field can achieve a truly “trapped rainbow” effect at microwave frequencies. We observe hot spots and relatively long duration times around critical positions through simulations and find that such a trapping effect is robust against disorders. Lastly, in the fifth chapter, we study the one-way waves in a surface magnetoplasmon cavity. We find that the external magnetic field can separate the clockwise and anti-clockwise cavity modes into two totally different frequency ranges. This offers us more choices, both in the frequency ranges and in the one-way directions, for realizing one-way components. We also show the waveguide-cavity coupling by designing a circulator, which establishes the foundation for potential applications. / <p>QC 20160816</p><p></p>
189

Anisotropía magnética y acople magneto-elástico en películas delgadas de Fe1-xGax crecidas epitaxialmente sobre ZnSe/GaAs(001) / Magnetic anisotropy and magneto-elastic coupling in epitaxial Fe1-xGax thin films grown over ZnSe/GaAs(001) / Anisotropie magnétique et accouplement magnéto-élastique dans epitaxial Fe1-xGax films fins cultivés sur ZnSe/GaAs (001)

Barturen, Mariana 11 June 2014 (has links)
Dans cette thèse, nous présentons l’étude de l'alliage Fe1−xGax en couche mince monocristallins et d’épaisseur nanométrique. Le travail, de nature expérimentale, a consisté à réaliser une caractérisation magnétique qui inclut l’étude des anisotropies magnétiques, des coefficients de couplages magnéto-élastiques et des domaines magnétiques. Pour cela j’ai utilisé principalement les techniques de résonance ferromagnétique, de mesure du couplage magnétoélastique par déflexion d’un cantilever et de microscopie à force magnétique (MFM). Les anisotropies ont été étudiées en fonction de l’épaisseur du film, de la concentration en Gallium et de la structure atomique, donnant lieu à une description très complète du système. On observe que les couches minces de Fe1−xGax conservent une grande partie des caractéristiques du matériau massif mais présentent également des spécificités. En particulier, on mesure une forte anisotropie hors plan (de l’ordre de dix fois supérieure à l’anisotropie dans le plan) à la fois d’origine magnétocristalline et magnétoélastique, et impliquant une autre contribution d’origine inconnue. Pour expliquer cette dernière contribution, nous avons émis l’hypothèse d’une anisotropie dans la distribution des paires de Ga (qui seraient plus nombreuses hors plan que dans le plan). Nous avons pu modéliser le phénomène en adaptant le modèle phénoménologique de Cullen. Comme conséquence de cette anisotropie hors plan, des domaines magnétiques en forme de bandes ou stripes apparaissent pour des épaisseurs de film supérieures à une épaisseur critique. Ces domaines, peuvent être retournés dans la direction du champ magnétique appliqué. / In this thesis we have introduced the study of the Fe1−xGax alloy grown as monocrystalline thin films of nanometric thicknesses. Our work was of experimental nature and consisted in a magnetic characterization that included the study of magnetic anisotropies, magneto-elastic coupling coefficients and magnetic domains. For this work we principally used three techniques: ferromagnetic resonance, magnetoelastic coupling measurement by deflection of cantilever and magnetic force microscopy . Anisotropies were studied in function of thickness, concentration and atomic structure, achieving an extensive description of the system. It was observed that the films conserved many of the bulk material characteristics, but at the same time they present some singularities that make them different. Particularly, a strong out of plane anisotropy was detected (ten times larger than the anisotropy inside the plane), which has a magnetocrystalline contribution, a magnetoelastic contribution and another one of unknown origin. To explain this last term which we put forward the hypothesis of an anisotropic distribution of Ga pairs (more Ga pairs out of plane than in plane). This last contribution could be modeled by adapting Cullen’s phenomenological model. As a consequence of this out of the plane anisotropy, magnetic domains with stripe pattern appear, for adequate thicknesses. These domains can rotate in the direction of the saturation applied magnetic field.
190

Magneto-Plasmonic Gold &amp; Nickel Core-Shell Structures

Brynolf, Max, Sengupta, Rohini January 2019 (has links)
The presented project explores the optical properties of magnetoplasmonic Au/Ni core-shell structures. The work aims at controlling dimensions and parameters in order to influence and analyze the optical properties of the nanostructures. The softwares utilized for the simulations were COMSOL Multiphysics 5.1 and MATLAB. Experimental results were acquired from labs done at Ångströms laboratory. From the research based study where the gold to nickel ratio was influenced, it was observed that the transmissions for the nanostructures at the differing wavelengths produced transmissions of similar bearings. Modes for certain wavelengths were found in correspondence with the transmissions and could potentially render explanations for influence on the optical properties of the nanostructures. Conclusively, it can be stated that the optical properties of the nanostructures could be influenced and controlled by varying the dimensions and properties of the said structure. Differing dimensions corresponded to noteworthy changes in the cross sections, the transmissions as well as the mode formations.

Page generated in 0.0242 seconds