• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 124
  • 55
  • 25
  • 13
  • 10
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 515
  • 176
  • 116
  • 97
  • 67
  • 64
  • 58
  • 56
  • 47
  • 41
  • 41
  • 40
  • 39
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Simulações estocásticas de nanopartículas magnéticas / Stochastic simulations of magnetic nanoparticles

Landi, Gabriel Teixeira 08 March 2012 (has links)
O tema deste trabalho é a modelização computacional das propriedades magnéticas de sistemas nanoparticulados a temperatura finita. Estes materiais, que são de grande interesse acadêmico e aplicado, possuem uma sensibilidade atípica às flutuações térmicas, um fenômeno conhecido como superparamagnetismo. Por essa e outras peculiaridades, eles apresentam um comportamento extremamente rico e complexo que se estende por uma gama ampla de situações experimentais, indo desde eras geológicas em aplicações na área de geomagnetismo, a fenômenos ultra-rápidos em dispositivos eletrônicos e tratamentos clínicos. O modelo empregado, conhecido como teoria de Néel-Brown, introduz na equação dinâmica magnética um termo estocástico para lidar com as flutuações térmicas. Sua validade é bastante geral, podendo ser aplicado para simular uma quantidade enorme de experimentos. Implementamos uma biblioteca numérica extremamente eficiente, que permite tratar sobre um mesmo escopo estas diferentes situações. Neste trabalho, focamos no problema de histerese dinâmica que vêm recebendo considerável atenção nos últimos anos motivado, principalmente, pela aplicação de nanopartículas magnéticas em tratamentos de tumores por uma técnica conhecida como magneto-hipertermia. / This thesis concerns the use of computer models to study the magnetic properties of nanoparticles at a finite temperature. These materials, which are of great academic and applied interest, are known to have an enhanced sensitivity to thermal fluctuations -- a phenomenon known as superparamagnetism. Such a peculiar nature is responsible for a large number of interesting physical phenomena, which are known to extend over a wide range of experimental situations. These include, among others, geomagnetism, ultra-fast devices and oncological treatments. The model employed, known as the Néel-Brown theory, introduces in the dynamical equation an stochastic term representing the thermal fluctuations. It\'s range of validity is quite broad, thus being applicable to all of the aforementioned situations. We implemented a highly efficient numerical library, whose scope extends over a large range of experiments. In this thesis we focused on the problem of dynamic hysteresis, which has receive considerable attention in recent years. This was motivated, among other things, by the potential use of nanoparticles in magneto-hyperthermia treatments.
192

Propriétés optiques et magnéto-optiques de systèmes électroniques purement bidimensionnels graphène / Optical and magneto-optical properties of purely two-dimensional electronic systems-graphene

Leszczynski, Przemyslaw 21 February 2014 (has links)
Malgré l'attention massive que le graphène a attiré ces dernières années, beaucoup de questions concernant ses propriétés fondamentales restent sans réponse. Dans ce travail, nous présentons les résultats d'une série d'expériences de magnéto-optique effectuées sur des systèmes de type graphène différents. La spectroscopie de diffusion micro-Raman a été utilisée comme une méthode de choix, en raison de son caractère non invasif, des puissantes possibilités de caractérisation qu’elle offre, et de la haute résolution spatiale. Les champs magnétiques élevés ont aussi été utilisés pour permettre d’ajuster de manière continue l'énergie des excitations électroniques inter-niveau de Landau et de les amener en résonance avec d'autres excitations existant dans le système. L’étude de l'évolution des excitations inter-niveau de Landau sous champs magnétique et les détails de la résonance magnéto-phonon, nous ont fourni des informations importantes sur les détails de l'interaction électron-phonon dans le graphène. Trois types de graphène différents sont étudiés dans ce manuscrit. Le premier se compose de flocons de graphène qui peuvent être trouvés sur la surface de graphite. Il est peut-être le système de graphène le moins étudié, mais est celui qui présente la qualité électronique la plus élevé. Dans le chapitre 7, nous présentons les résultats de nos expériences de diffusion magnéto-Raman sur ce système. Notre méthode de localisation de ces flocons à l'aide ou non d'un champ magnétique est présenté. L'évolution des excitations électroniques dans des champs magnétiques est discutée. Les effets de la température, la longueur d'onde d'excitation et de couplage différent sur le substrat sont présentés. Nous démontrons que, pour des champs magnétiques élevés une structure fine des principales excitations électroniques inter-bande se développe, et est discutée en termes de dopage et d’asymétrie électron-trou. Un nouveau type de résonance électron-phonon est observée, qui implique une diffusion inter-vallée des porteurs et l’émission d'un phonon au point K. Un procédé analogue pour les phonons du voisinage du point Γ est observé. Le deuxième système étudié est constitué d'un flocon de graphène encapsulé entre deux couches de nitrure de bore hexagonal (hBN) plat à l’échelle atomique. Il est le représentant d'une nouvelle classe de matériaux, où les différents cristaux 2D, sont empilés les uns sur les autres dans un ordre prédéfini, pour modifier certaines propriétés de ses constituants. Déposer le graphène sur une mince couche de hBN améliore largement ses propriétés électroniques, en comparaison à du graphène déposée sur Si/SiO2. Dans le chapitre 8, nous présentons des résultats obtenus sur ce système. Nous montrons comment la cartographie spatiale associée à la technique de spectroscopie Raman peut être utilisé pour la caractérisation et la visualisation sélective des composants individuels et des structures complexes empilés. La première observation non ambiguë de la résonance magnéto-phonon et d’une excitation électronique (L -1,1) dans du graphene exfolié neutre est présentée. Une dépendance de la vitesse de Fermi par rapport au champ magnétique est démontrée. En outre, la dépendance de la vitesse de Fermi et d’énergie de bande 2D sur le substrat est observée et discutée en termes de d’écrantage diélectrique de l'interaction électron-électron.Le dernier système étudié sont des flocons de graphène produit par croissance CVD, avec des contacts électriques. Dans le chapitre 9, nous détaillons les résultats d'une expérience, où la force de l'interaction électron-phonon dans un échantillon de graphène avec une grille électrostatique, peut être ajustée, avec succès, par la tension de grille appliquée. Nous comparons ces résultats avec les calculs théoriques et nous montrons que les excitations électroniques intra-bande jouent un rôle important dans la renormalisation de l'énergie des phonons. / Despite the massive attention that graphene has attracted in recent years, there are still many unanswered questions about its fundamental properties. In this work we present the results of a series of magneto-optical experiments performed on different graphene systems. The micro-Raman scattering spectroscopy was used as our method of choice, due to its non-invasive character, powerful characterization possibilities and high spatial resolution. The high magnetic fields were used to continuously tune the energy of inter-Landau level electronic excitations into a resonance with other excitations existing in the system. The magnetic field evolution of Raman active inter-Landau level excitations, and the details of the magneto-phonon resonance, gave us important information about the details of the electron-phonon interaction in graphene. Three different types of graphene are studied in this work. The first one consists of graphene flakes that can be found on the surface of graphite. It is possibly the least investigated graphene system, yet the one that shows the highest electronic quality. In Chapter 7 we present results of our magneto-Raman scattering experiments on this system. Our method for locating these flakes with the use of the magnetic field and without it is presented. The evolution of electronic excitations in magnetic fields is discussed. The effects of temperature, excitation wavelength and different coupling to the substrate are shown. We demonstrate that at high magnetic fields a fine-structure of the principal interband electronic excitation develops and discuss it in terms of doping and electron-hole asymmetry. A new type of a resonant electron-phonon interaction is observed, which involve an inter-valley carrier scattering and an emission of a K-point phonon. An analogous process for the phonons from the vicinity of the Γ point is observed.The second studied system consists of a graphene flake encapsulated between two layers of atomically flat hexagonal boron nitride (hBN). It is a representative of a novel class of materials, where different 2D crystals, are stacked on top of each other in a predefined order, to modify some properties of its constituents. Depositing graphene on a thin layer of hBN is expected to largely improve its electronic properties, as compared to graphene deposited on Si/SiO2. In Chapter 8 we present results obtained on such system. We show how spatial mapping with Raman scattering technique can be used for characterization and selective visualization of each constituent of the complex, stacked structures. A first, clear observation of a magneto-phonon resonance and L(-1,1) electronic excitation in an intrinsic, exfoliated graphene is shown. The Fermi velocity dependence on the magnetic field is demonstrated. Also, the Fermi velocity and 2D band energy dependence on the substrate is observed and discussed in terms of dielectric screening of the electron-electron interaction.The last studied system is the CVD grown graphene flake with electrical contacts. In Chapter 9 we show the results of an experiment, where strength of the electron-phonon interaction in a gated, CVD grown, graphene was successfully tuned by the applied gate voltage. We compare these results with the theoretical calculations and show that the intra-band electronic excitations play an important role in the renormalization of the phonon energy.
193

Análise dinâmica não-linear de um sistema não-ideal, utilizando amortecedor magneto-reológico /

Castão, Kléber Augusto Lisboa. January 2008 (has links)
Orientador: José Manoel Balthazar / Banca: Bento Rodrigues de Pontes Junior / Banca: Vicente Lopes Junior / Resumo: Nesta dissertação faz-se a análise da dinâmica não-linear de um sistema que possui preso a ele um motor de corrente contínua com potência limitada, onde são acoplados uma mola não linear e um amortecedor do tipo magneto-reológico (dispositivo que tem como fluído interno o fluído magneto-reológico). Com o objetivo de estudar e analisar a influência deste dispositivo na dinâmica do oscilador. Inicialmente apresenta-se uma breve descrição do tipo de problema estudado (sistemas não ideais) e uma revisão dos principais trabalhos que têm sido feitos tendo este dispositivo como foco de estudos. Apresentam-se os modelos utilizados para prever o comportamento destes dispositivos e também uma síntese de alguns modelos (mecânicos e matemáticos) mais elaborados e completos utilizados também para prever este comportamento. A partir daí é feita a apresentação do modelo que prevê o comportamento do amortecedor MR utilizado (modelo Bingham) e de uma suavização do mesmo, utilizada com o objetivo de melhorar o comportamento computacional do modelo inicial, junto a isso, apresenta-se a modelagem matemática do problema visando à obtenção das equações governantes do sistema. Faz-se então a análise do sistema durante a passagem pela ressonância (onde a freqüência de rotação do motor CC se aproxima numericamente e passa pela freqüência natural do sistema), analisando o efeito deste amortecedor durante esta passagem, analisa-se também a influência do dispositivo na evolução do Efeito Sommerfeld, um dos fenômenos intrínsecos desta classe de sistemas e também é feita uma analise do sistema em condições de movimento caótico também com o objetivo de prever o comportamento deste dispositivo, tudo isso é executado através da integração numérica das equações governantes do sistema. Para efeito de ilustração apresenta-se, também, uma pequena amostra do comportamento do sistema ideal paralelo ao estudado ... / Abstract: In this dissertation it made the analysis of the nonlinear dynamics of a system that possess to fixed it a direct-current motor with limited power, where is connected a damper of the type Magnetorheological (device that has as fluid intern the fluid Magnetorheological), with the objective to study and to analyze the influence of this device in the dynamics of the oscillator. Initially one brief description of the type of studied problem is presented (nonideal systems) and a revision of the main works that have been made having this device as focus of studies. The used models are presented to predict the behavior of these devices and also a synthesis of some models (mechanics and mathematicians) more elaborated and complete also used to predict this behavior. To continue this work, we present the model that predict the behavior of used MR damper (the Bingham Model) and a smoothing of the same, used with the objective to improve the computational behavior of the initial model and the mathematical modeling of the problem, together this, we show mathematical modeling of this problem aiming at to the attainment of the governing equations of the system. The analysis of the system it is made then during the passage for the resonance (where the frequency of DC motor it approaches numerically and crosses the natural frequency of the system), analyzing the effect of this damper during this passage, the influence of the device in the evolution of Sommerfeld Effect is also analyzed, one of the intrinsic phenomena of this classroom of systems and also is made a analyzes of the system in conditions of chaotic motions also with the objective to predict the behavior of this device, everything this is executed through the numerical integration of the governing equations of the system. For illustration effect it is presented, also, a small sample of the behavior of the parallel ideal system to the studied one, also with the presence of shock absorber MR, in the.. / Mestre
194

Modélisation du comportement magnéto-mécanique d’un acier Dual Phase à partir de sa description microstructurale / Magneto-mechanical modelling of Dual Phase steels behaviour

Mballa Mballa, Frederick Sorel 17 December 2013 (has links)
La maîtrise du procédé de fabrication des aciers DP, en particulier le contrôle du cycle thermique est nécessaire afin pour l'obtention de microstructures biphasées et la reproductibilité des caractéristiques mécaniques et des propriétés d'usage attendues. Cette maîtrise passe par la mise en place de moyens de contrôle non destructifs de l'état microstructural en ligne permettant la détection d'irrégularités de la microstructure signes d'irrégularité du traitement thermique. Ce constat a donc conduit ARCELORMITTAL à mettre en place des moyens de contrôle non destructif en ligne permettant le contrôle de l'état microstructural par mesure magnétique. Pour que la mesure magnétique donne des informations précises sur l’état microstructural, une description mathématique fine des liens entre microstructure et propriétés magnétiques en ligne est recherchée. L'objectif fixé est d'arriver à prédire, sinon d'une façon quantitative, au moins d'une façon qualitative fine, la réponse magnétique à divers paramètres des microstructures d'aciers DP industriels dans le cadre d'une simulation micromagnétique magnéto-mécanique. Nous introduisons une formulation statique du couplage magnéto-mécanique basée sur la minimisation d’une fonctionnelle énergétique couplée à la résolution des équations de la mécanique des milieux continus. / The control of the manufacturing process of DP steels, in particular the control of the thermal cycle is necessary for obtaining Dual Phase microstructures and the reproducibility of the mechanical characteristics and the user properties. This control requires an online monitoring of the microstructural state. This allows the detection of irregularities of the microstructure and thus the irregularities of the heat treatment. This report thus led ARCELORMITTAL to set up an online non destructive evaluation of the microstructural state by magnetic measurement. So that magnetic measurement gives accurate informations on the microstructural state, a fine mathematical description of the links between microstructure and the online magnetic properties is required. The main objective is to manage to predict, if not in a quantitative way, at least in a fine qualitative way, the magnetic answer to various parameters of the industrial steel DP microstructures within the framework of a micromagnetism simulation. We introduce a static formalism of magnetomechanical coupling based on the energy functional minimization coupled with the resolution of the continuum mechanic equations.
195

In Situ Magnetic Field Characterization with the Directional Hanle Effect

Jackson, Jarom Silver 01 June 2016 (has links)
We present a novel method of in situ magnetic field mapping related to the Hanle effect. This method uses the change in spatial radiation pattern of scattered light, which we call a 'directional Hanle effect,' rather than the loss of polarization more commonly associated with the Hanle effect. It is particularly well suited for fields in a magneto-optical trap (MOT), requiring only the addition of a narrow slit and a camera to typical MOT components. The use of this method is demonstrated by measuring the gradient through, and location of, the zero-point of the field in our strontium MOT.
196

STUDIES OF MAGNETICALLY INDUCED FARADAY ROTATION BY POLARIZED HELIUM-3 ATOMS

Abney, Joshua 01 January 2018 (has links)
Gyromagnetic Faraday rotation offers a new method to probe limits on properties of simple spin systems such as the possible magnetic moment of asymmetric dark matter or as a polarization monitor for polarized targets. Theoretical calculations predict the expected rotations of linearly polarized light due to the magnetization of spin-1/2 particles are close to or beyond the limit of what can currently be measured experimentally (10−9 rad). So far, this effect has not been verified. Nuclear spin polarized 3He provides an ideal test system due to its simple structure and ability to achieve high nuclear spin polarization via spin-exchange optical pumping (SEOP). To maximize the expected signal from 3He, a SEOP system is built with a modern narrowband pumping laser and a 3He target designed to use with a multipass cavity. Additionally, a sensitive triple modulation apparatus for polarimetry is utilized and further developed to detect Faraday rotations on the order of nanoradians. This works presents the results of the measurement of the magnetic Faraday effect.
197

Quantum Sensing with NV Centers in Diamond

Kavatamane Rathnakara, Vinaya Kumar 27 September 2019 (has links)
No description available.
198

Dynamic interactions of electromagnetic and mechanical fields in electrically conductive anisotropic composites

Barakati, Amir 01 December 2012 (has links)
Recent advances in manufacturing of multifunctional materials have provided opportunities to develop structures that possess superior mechanical properties with other concurrent capabilities such as sensing, self-healing, electromagnetic and heat functionality. The idea is to fabricate components that can integrate multiple capabilities in order to develop lighter and more efficient structures. In this regard, due to their combined structural and electrical functionalities, electrically conductive carbon fiber reinforced polymer (CFRP) matrix composites have been used in a wide variety of applications in most of which they are exposed to unwanted impact-like mechanical loads. Experimental data have suggested that the application of an electromagnetic field at the moment of the impact can significantly reduce the damage in CFRP composites. However, the observations still need to be investigated carefully for practical applications. Furthermore, as the nature of the interactions between the electro-magneto-thermo-mechanical fields is very complicated, no analytical solutions can be found in the literature for the problem. In the present thesis, the effects of coupling between the electromagnetic and mechanical fields in electrically conductive anisotropic composite plates are studied. In particular, carbon fiber polymer matrix (CFRP) composites subjected to an impact-like mechanical load, pulsed electric current, and immersed in the magnetic field of constant magnitude are considered. The analysis is based on simultaneous solving of the system of nonlinear partial differential equations, including equations of motion and Maxwell's equations. Physics-based hypotheses for electro-magneto-mechanical coupling in transversely isotropic composite plates and dimension reduction solution procedures for the nonlinear system of the governing equations have been used to reduce the three-dimensional system to a two-dimensional (2D) form. A numerical solution procedure for the resulting 2D nonlinear mixed system of hyperbolic and parabolic partial differential equations has been developed, which consists of a sequential application of time and spatial integrations and quasilinearization. Extensive computational analysis of the response of the CFRP composite plates subjected to concurrent applications of different electromagnetic and mechanical loads has been conducted. The results of this work verify the results of the previous experimental studies on the subject and yield some suggestions for the characteristics of the electromagnetic load to create an optimum impact response of the composite.
199

Novel Magneto-LC resonance Sensors for Industrial and Bioengineering Applications

Thiabgoh, Ongard 06 April 2018 (has links)
The scientific studies associated with material engineering and device miniaturization are the core concepts for future technology innovation. The exploring and tailoring of material properties of amorphous magnetic microwires, recently, have revealed remarkable high sensitive magnetic field sensitivity down to the picoTesla regime at room temperature. This superior magnetometer is highly promising for active sensing and real-time monitoring building block for modern industrial devices and healthcare applications. The low-field, high sensitivity regime of the GMI response over a wide frequency range (1 MHz - 1 GHz) in the Co-rich melt-extracted microwires was optimized through novel Joule annealing methods (single- and multi-step current annealing techniques). Optimization of current value through multi-step current annealing (MSA) from 20 mA to 100 mA for 10 minutes is the key to improving the GMI ratio, and its field sensitivity up to 760% and 925%/Oe at f ≈ 20 MHz. The respective GMI ratio and field sensitivity are 1.75 times and 17.92 times higher than those of the as-prepared counterpart. The employment of the MSA technique successfully enhances the surface domain structures of the Co-rich microwires. This alternative tailoring method is suitable for improving the GMI sensitivity for a small field detection. The high sensitive response of the GMI to a weak magnetic field is highly promising for biomedical sensing applications. Real-time monitoring of position, motion, and rotation of a non-stationary object is crucial for product packaging, conveying, tracking, and safety compliance in industrial applications. The effectiveness of current sensing technology is limited by sensing distance and messy environments. A new class of high-frequency GMI-based sensor was designed and fabricated using the optimal Co-rich microwire. The impedance spectrum from the optimal sensing element showed a high GMI ratio and high field sensitivity response at low magnetic fields. The GMI sensor based longitudinal effect was found to be more sensitive than the commercially available Gaussmeters. The practical utility of the high sensitivity of the miniaturized sensor at weak magnetic fields for far-off distance monitoring of position, speed and gear rotating was demonstrated. This GMI-based sensor is highly promising for real-time position detection, oscillatory motion monitoring, and predictive failure of a rotating gear for industrial applications. Monitoring the rate of respiration and its pattern is crucial to assessing an individual’s health or progression of an illness, creating a pressing need for fast, reliable and cost-effective monitors. A new sensor based on a magnetic coil, which is made of Co-rich melt-extracted microwire for the detection of small magnetic fields was fabricated. The 3 mm diameter coil is wound from a Co-rich magnetic microwire. Unlike some typical solenoids, the MMC is sensitive to small magnetic fields due to a significant change in impedance attributed to the high-frequency giant magneto-impedance (GMI) effect. An application of the MMC sensor for the detection of a position-varying source of a small magnetic field (~0.01 – 10 Oe) in real-time bio-mechanical movement monitoring in human was demonstrated. This newly developed MMC magneto-LC resonance technology is highly promising for active respiratory motion monitoring, eye movement detection and other biomedical field sensing applications.
200

Laser Cooling and Trapping of Metastable Neon and Applications to Photoionization

Ashmore, Jonathan P, n/a January 2005 (has links)
This thesis presents an in-depth study into the characterization and enhancement of a metastable neon laser cooled and trapped atomic beam. The apparatus consists of a standard Zeeman slowed atomic beam loaded into a magneto-optical trap and was designed for applications to electron scattering experiments and photoionization. The efficiency of the metastable neon atomic source was investigated to determine the ideal cathode type for maximum metastable production and optimal atomic beam velocity haracteristics. A series of characterization measurements were performed on the MOT, and the trap volume and population were investigated for a range of trapping and slowing laser intensities and detunings, together with the MOT and Zeeman slower magnetic fields. The volume measurements were compared to standard Doppler theory and it was found that the Doppler model inadequately explained the trap behaviour. It was found that the MOT population characteristics were governed by two processes: two-body losses that limit the trap population at high densities, and the efficiency of the atom capture process which limits the operational range of the MOT over the various parameters. The trap temperature was determined to be 1.3mK via a time-of-flight technique. This was nearly twice that predicted by Doppler theory and the lack of agreement once again suggests the inadequacies in the Doppler theory to correctly model the experiment. The application of the MOT to the photoionization cross-section measurement of the (2p53p)3D3 state of neon was investigated. The MOT decay technique was utilized to measure cross-section values of o351 = 2.9+0.2 -0.3 x 10 -18cm2 and o363 = 3.1 +0.3 -0.4 x 10-18cm2 at the wavelengths of 351nm and 363nm respectively. This is an increase in accuracy of around a factor of five from previous measurements and it was found that the results agreed well with the values predicted by current theories.

Page generated in 0.068 seconds