• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of magnetic and dielectric properties on Eu2O3 nanoparticles embedded in silica matrix

Chen, Ching-Hsuan 05 July 2010 (has links)
Magnetic nanocrystalline Eu2O3 (0.5 mol %) particles have been synthesized in a silica glass matrix by the sol-gel method at calcination temperatures of 700oC and above. X-ray and TEM studies reveal the nanocrystals with mean sizes in the range 4¡V8 nm, larger in the samples calcined at higher temperatures. The magnetization and magnetic hysteresis of Eu2O3 nanocrystals in the temperature range of 2-300K have demonstrated that the Eu2O3 nanocrystals in these glasses display superparamagnetic state. The temperature dependence of dielectric constant curves demonstrate a broad maximum around Tm ~ 270 K characteristic by diffuse phase transition (DPT). At the highest applied magnetic field 9 tesla, at superparamagnetic phase, the dielectric constant around Tm decreases almost ~ 1.5 (at 2.5 kHz) times compared with that at zero field for the sample calcined at 700¢J (~2 nm). The magnetodielectric effect observed in the glass composite is considered to be affected with the direct consequence of magnetoresistance changes which depends on the magnetic nanoparticle size and separation. Combustion mechanism is closely relate to the thermally activation oxygen vacancy. Such a material might be treated as a potential candidate for device miniaturization.
2

The study of magnetodielectric behaviors in spin frustrated Cu2Te2O5X2 (X=Cl and Br) compounds

Yeh, Chin-Chia 28 June 2012 (has links)
An intriguing magnetodielectric (MD) behavior is observed in geometrically frustrated spin-tetrahedral systems Cu2Te2O5X2 (X = Cl and Br). While the phase transition observed in the Cl-system at TN=18.5 K is consistent with 3D antiferromagnetic ordering, the phase transition at To=11.5 K in the Br-system has several unusual features. Concomitantly, a pronounced ferroelectric ordering is observed coinciding with TN of Cl-system and To of Br-system. At the highest applied magnetic field 90 kOe, the temperature dependent dielectric behavior with almost frequency independent well defined at TN~18.5 K are decrease compared with that at zero field for Cl-system, and at the highest applied magnetic field 90 kOe, the temperature dependent dielectric behavior with almost frequency independent well defined at Tm~30 K are decrease compared with that at zero field for Br-system. The ferroelectricity is ascribed to the polarization of the Te4+ lone-pair electrons, while the MD effect is argued to be due to exchange interaction involving frustrated tetramer clusters and intercluster exchange bridges.
3

Magnetodielectric study on double perovskite Pr2CoMnO6

Chang, Jie-Hao 02 July 2012 (has links)
We report an intriguing giant dielectric and magnetodielectric (MD) response on double perovskite Pr2CoMnO6(PCMO) system. The Arrhenius plot indicates that the origin of giant dielectric is internal barrier layer capacitance. Meanwhile, at the highest applied magnetic field 9T, the giant dielectric constant around Tm ~ 150 K is enhanced almost ~ 20% (at 10 kHz frequency) compared with that at zero field. The observed positive MD effect is considered to be associated with the direct consequence of negative magnetoresistance changes (~ -20% at 150 K) which was calculated by temperature dependent impedance spectras. Concomitantly, a pronounced ferromagnetic ordering is observed near Tc ~ 150 K coinciding with Tm of £`¡¬(T). These experimental results suggest that the magnetoresistive and MD effect response is very strongly by magnetic property of PCMO.
4

The study od magnetodielectric behaviors in frustrated Cu2Te2O5Br2 compound

Chin, Yi-Pin 22 July 2011 (has links)
An intriguing magnetodielectric behavior is observed in triangular or tetrahedral frustrated and low-dimensional system. Therefore, the spin-tetrahedral and low-dimensional compound copper-tellurides (Cu2Te2O5Br2) is suggested that has magnetodielectric behavior. Tetragonal Cu2Te2O5Br2 contains clusters of four Cu2+ (S = 1/2) in a planar coordination. These tetrahedral form weakly coupled sheets within the crystallographic a-b plane. Therefore, this system is ideal to study the interplay between the spin frustration on a tetrahedron with localized low-energy excitations and collective magnetism induced by inter-tetrahedral couplings. In this material a strongly reduced magnetic transition temperature To = 11.5 K in comparison with a dominant magnetic exchange of 30 K is found. Low-dimensional systems with triangular geometries are considered as prominent candidates for applications using novel magnetoelectric materials. At the highest applied magnetic field 90 kOe, the temperature dependent dielectric behavior with almost frequency independent well defined maxima at Tm ~ 30 K and To ~ 11.5 K are enhanced compared with that at zero field. We suggest that the observed magnetodielectric coupling can arise from exchange striction involving frustrated tetramer clusters and inter-cluster exchange bridges with polarizable lone-pair electrons on Te4+ ions.
5

Magnetic and magnetodielectric properties of Eu2+-containing oxides / Eu2+を含む酸化物の磁性と電気磁気効果

Zong, Yanhua 24 September 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15670号 / 工博第3328号 / 新制||工||1502(附属図書館) / 28207 / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 田中 勝久, 教授 平尾 一之, 教授 横尾 俊信 / 学位規則第4条第1項該当
6

Élaboration et réalisation de matériaux magnétodiélectriques pour la miniaturisation d'antennes en bande UHF / Development and realization of magnetodielectric materials for antenna miniaturization in the UHF band

Le Guen, Emmanuel 20 February 2014 (has links)
La miniaturisation des antennes s'accompagne d'une dégradation leurs performances (bande passante, gain, efficacité), surtout avec l'utilisation de substrats matériaux diélectriques. Pour relever le défi « intégration / performances », la conception de nouveaux matériaux tels que les ferrites magnétoélectriques constitue une alternative des plus prometteuses. Ce travail met en avant les principaux paramètres à l'élaboration de ferrite spinelle par coprécipitation. Un traitement thermique modéré a permis l'obtention de céramiques semi poreuses pour la montée en fréquence. En parallèle, l'anisotropie magnétocristalline, liée à la composition (rapport Nickel / Zinc, Cobalt, Fer 2+…) ; ainsi que l'anisotropie magnétoélastique lors de l'application d'une contrainte, étendent encore le domaine des faibles pertes des ferrites de Nickel-Zinc de 400 MHz à plus de 1 GHz. Ces matériaux ont ainsi pu équiper des antennes sur les fréquences du DVH-H (470 – 830 MHz) et répondent aux normes du DVB-H. De façon à profiter pleinement de la miniaturisation, nous avons proposé une antenne imprimée. Une bonne corrélation est trouvée entre les résultats de simulation et de mesure, ainsi que des relations adaptées aux antennes patch. Enfin dans le domaine émergent des communications On / Off bodies, nous avons développé des antennes flexibles sur un substrat de type PDMS. Pour assurer une bonne efficacité de l'antenne, celle-ci est encapsulée, ce qui évite une métallisation hasardeuse (fissures, manque d'adhérence). / Antenna miniaturization, especially with dielectric substrates, is accompanied by a radiation loss (bandwidth, gain, efficiency). To meet the challenge "integration / performance", the design of new materials such as magnetodielectrics ferrites is a promising alternative. To satisfy these requirements, this work highlights the main parameters of ferrite spinel development by coprecipitation. A moderate thermal treatment leads to semi porous ceramics. In parallel, the magnetocrystalline anisotropy, related to the composition (ratio Nickel / Zinc, Cobalt, Iron 2+ ...), and the magnetoelastic anisotropy with application of stress, extend the field of low-loss from 400 MHz to over 1 GHz, in the Nickel-Zinc ferrite. These materials were able to equip antennas on DVH-H frequencies (470-830 MHz). In order to take full advantage of miniaturization, we proposed a printed antenna. A good correlation between simulation results and measurement is obtained, together with relations adapted to patch antennas. Finally, in the emerging field of communications On / Off bodies, we have developed flexible antennas on PDMS substrate. To ensure good antenna efficiency, it is encapsulated, thereby avoiding a hazardous metallization (cracks, loss of adhesion).
7

A Study of Microfluidic Reconfiguration Mechanisms Enabled by Functionalized Dispersions of Colloidal Material for Radio Frequency Applications

Goldberger, Sean A. 2009 May 1900 (has links)
Communication and reconnaissance systems are requiring increasing flexibility concerning functionality and efficiency for multiband and broadband frequency applications. Circuit-based reconfiguration mechanisms continue to promote radio frequency (RF) application flexibility; however, increasing limitations have resulted in hindering performance. Therefore, the implementation of a "wireless" reconfiguration mechanism provides the required agility and amicability for microwave circuits and antennas without local overhead. The wireless reconfiguration mechanism in this thesis integrates dynamic, fluidic-based material systems to achieve electromagnetic agility and reduce the need for "wired" reconfiguration technologies. The dynamic material system component has become known as electromagnetically functionalized colloidal dispersions (EFCDs). In a microfluidic reconfiguration system, they provide electromagnetic agility by altering the colloidal volume fraction of EFCDs - their name highlights the special considerations we give to material systems in applied electromagnetics towards lowering loss and reducing system complexity. Utilizing EFCDs at the RF device-level produced the first circuit-type integration of this reconfiguration system; this is identified as the coaxial stub microfluidic impedance transformer (COSMIX). The COSMIX is a small hollowed segment of transmission line with results showing a full reactive loop (capacitive to inductive tuning) around the Smith chart over a 1.2 GHz bandwidth. A second microfluidic application demonstrates a novel antenna reconfiguration mechanism for a 3 GHz microstrip patch antenna. Results showed a 300 MHz downward frequency shift by dielectric colloidal dispersions. Magnetic material produced a 40 MHz frequency shift. The final application demonstrates the dynamically altering microfluidic system for a 3 GHz 1x2 array of linearly polarized microstrip patch antennas. The parallel microfluidic capillaries were imbedded in polydimethylsiloxane (PDMS). Both E- and H-plane designs showed a 250 MHz frequency shift by dielectric colloidal dispersions. Results showed a strong correlation between decreasing electrical length of the elements and an increase of the volume fraction, causing frequency to decrease and mutual coupling to increase. Measured, modeled, and analytical results for impedance, voltage standing wave ratio (VSWR), and radiation behavior (where applicable) are provided.
8

A Study of Microfluidic Reconfiguration Mechanisms Enabled by Functionalized Dispersions of Colloidal Material for Radio Frequency Applications

Goldberger, Sean A. 2009 May 1900 (has links)
Communication and reconnaissance systems are requiring increasing flexibility concerning functionality and efficiency for multiband and broadband frequency applications. Circuit-based reconfiguration mechanisms continue to promote radio frequency (RF) application flexibility; however, increasing limitations have resulted in hindering performance. Therefore, the implementation of a "wireless" reconfiguration mechanism provides the required agility and amicability for microwave circuits and antennas without local overhead. The wireless reconfiguration mechanism in this thesis integrates dynamic, fluidic-based material systems to achieve electromagnetic agility and reduce the need for "wired" reconfiguration technologies. The dynamic material system component has become known as electromagnetically functionalized colloidal dispersions (EFCDs). In a microfluidic reconfiguration system, they provide electromagnetic agility by altering the colloidal volume fraction of EFCDs - their name highlights the special considerations we give to material systems in applied electromagnetics towards lowering loss and reducing system complexity. Utilizing EFCDs at the RF device-level produced the first circuit-type integration of this reconfiguration system; this is identified as the coaxial stub microfluidic impedance transformer (COSMIX). The COSMIX is a small hollowed segment of transmission line with results showing a full reactive loop (capacitive to inductive tuning) around the Smith chart over a 1.2 GHz bandwidth. A second microfluidic application demonstrates a novel antenna reconfiguration mechanism for a 3 GHz microstrip patch antenna. Results showed a 300 MHz downward frequency shift by dielectric colloidal dispersions. Magnetic material produced a 40 MHz frequency shift. The final application demonstrates the dynamically altering microfluidic system for a 3 GHz 1x2 array of linearly polarized microstrip patch antennas. The parallel microfluidic capillaries were imbedded in polydimethylsiloxane (PDMS). Both E- and H-plane designs showed a 250 MHz frequency shift by dielectric colloidal dispersions. Results showed a strong correlation between decreasing electrical length of the elements and an increase of the volume fraction, causing frequency to decrease and mutual coupling to increase. Measured, modeled, and analytical results for impedance, voltage standing wave ratio (VSWR), and radiation behavior (where applicable) are provided.

Page generated in 0.2391 seconds