Spelling suggestions: "subject:"magnetooptical."" "subject:"magnetostatics.""
41 |
Optická odezva magnetických materiálů / Optical response of magnetic materialsWagenknecht, David January 2014 (has links)
David Wagenknecht: Abstract of a diploma thesis Optical response of magnetic materials, 2014 Magnetooptical properties of anisotropic semiconductors are studied to describe asymmetry of Ga1−xMnxAs, because theoretical calculations predict extraordinary behaviour of reflectivity. Analytical formulae to describe materials with non-diagonal permittivity are derived and they are used for the numerical calculations to describe the optical response of the samples available for the measurement. The transversal Kerr effect is calculated and it exhibits asymmetry in both rotation of the plane of polarization and ellipticity of circularly polarized light due to asymmetry in reflectivity. Moreover, longitudinal and polar magnetization are studied because of the influence on the observability of the phenomena. Results are not only used to discuss conditions, which must be satisfied to prove the asymmetry, but also the actual experimental setup is designed to prepare the measurement. 1
|
42 |
Propriedades de pontos quânticos de InP/GaAs / Structural and optical properties of InP/GaAs type II quantum dotsGodoy, Marcio Peron Franco de 19 May 2006 (has links)
Orientador: Fernando Iikawa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-06T18:02:06Z (GMT). No. of bitstreams: 1
Godoy_MarcioPeronFrancode_D.pdf: 4057709 bytes, checksum: 0df1e56082150d4109dcf891f05d4da6 (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho estudamos as propriedade estruturais e ópticas de pontos quânticos auto-organizados de InP crescidos sobre o substrato de GaAs. Esta estrutura apresenta o alinhamento de bandas tipo-II na interface, confinando o elétron no ponto quântico, enquanto o buraco mantém-se na barreira, próximo à interface devido à interação coulombiana atrativa.
As amostras foram crescidas por epitaxia de feixe químico (CBE) no modo Stranskii-Krastanov. Os pontos quânticos apresentam raio médio de 25 nm e grande dispersão de altura (1-5 nm) e ocorre a relaxação parcial do parâmetro de rede, chegando a 2 %, em pontos quânticos superficiais. Do ponto de vista de propriedades ópticas, a fotoluminescência de pontos quânticos superficiais exibe uma eficiente emissão óptica, devido a baixa velocidade de recombinação dos estados superficiais do InP, e reflete a densidade e distribuição bimodal de tamanhos. Além disso, sua emissão óptica em função da intensidade de excitação exibe comportamento diverso em comparação com pontos quânticos cobertos com uma camada de GaAs.
Em pontos quânticos cobertos, determinamos a energia de ativação térmica, que varia de 6 a 8 meV, e é associada à energia de ligação do éxciton ou energia de ionização do buraco. O decaimento temporal da luminescência de pontos quânticos é de 1,2 ns, um tempo relativamente curto para um ponto quântico tipo-II. A análise das propriedades magneto-ópticas em pontos quânticos individuais, inédita em QDs tipo-II, permitiu verificar que o fator-g do éxciton é praticamente constante, independentemente do tamanho dos QDs, devido ao fato dos buracos estarem levemente ligados.
Por fim, mostramos a versatilidade do sistema acoplando-o a um poço quântico de InGaAs. Este acoplamento introduz mudanças na superposição das funções de onda do par elétron-buraco que permitem a manipulação do tempo de decaimento da luminescência e da energia de ligação excitônica / Abstract: We have investigated structural and optical properties of InP self-assembled quantum dots grown on GaAs substrate. This system presents a type-II band lineup where only electrons are confined in the InP quantum dots. The InP/GaAs quantum dots were grown by chemical beam epitaxy in the Stranskii-Krastanov mode. Our quantum dots present a mean radius of 25 nm and large height dispersion, 1-5 nm, and a partial relieve of the strain up to 2 % is observed. The photoluminescence spectra of surface quantum dots show an efficient optical emission, which is attributed to the low surface recombination velocity in InP. We observed a bimodal dispersion of the dots size distribution, giving rise to two distinct emission bands. A remarkable result is the relatively large blue shift of the emission band from uncapped samples as compared to those for capped dots.
In capped quantum dots, we obtained the thermal activation energy, from 6 to 8 meV, which is associated to the exciton binding energy or hole ionization energy. The observed luminescence decay time is about 1.2 ns, relatively short decay time for type II system. We investigated magneto-optical properties using single-dot spectroscopy. The values of the exciton g factor obtained for a large number of single InP/GaAs dots are mainly constant independent of the emission energy and, therefore, of the quantum dot size. The result is attributed to the weak confinement of the holes in InP/GaAs QDs.
We have also investigated structures where InP quantum dots are coupled to a InGaAs quantum well. This system permits the manipulation of the wave function overlap between electron-hole in order to control the optical emission decay time and exciton binding energy / Doutorado / Física / Doutor em Ciências
|
43 |
Employment of dual frequency excitation method to improve the accuracy of an optical current sensor, by measuring both current and temperature.Karri, Avinash 12 1900 (has links)
Optical current sensors (OCSs) are initially developed to measure relatively large current over a wide range of frequency band. They are also used as protective devices in the event a fault occurs due to a short circuit, in the power generation and distribution industries. The basic principal used in OCS is the Faraday effect. When a light guiding faraday medium is placed in a magnetic field which is produced by the current flowing in the conductor around the magnetic core, the plane of polarization of the linearly polarized light is rotated. The angle of rotation is proportional to the magnetic field strength, proportionality constant and the interaction length. The proportionality constant is the Verdet constant V (λ, T), which is dependent on both temperature and wavelength of the light. Opto electrical methods are used to measure the angle of rotation of the polarization plane. By measuring the angle the current flowing in the current carrying conductor can be calculated. But the accuracy of the OCS is lost of the angle of rotation of the polarization plane is dependent on the Verdet constant, apart from the magnetic field strength. As temperature increases the Verdet constant decreases, so the angle of rotation decreases. To compensate the effect of temperature on the OCS, a new method has been proposed. The current and temperature are measured with the help of a duel frequency method. To detect the line current in the conductor or coil, a small signal from the line current is fed to the reference of the lock in. To detect the temperature, the coil is excited with an electrical signal of a frequency different from the line frequency, and a small sample of this frequency signal is applied to the reference of the lock in. The temperature and current readings obtained are look up at the database value to give the actual output. Controlled environment is maintained to record the values in the database that maps the current and temperature magnitude values at the DSP lock in amplifier, to the actual temperature and current. By this method we can achieve better compensation to the temperature changes, with a large dynamic range and better sensitivity and accuracy.
|
Page generated in 0.0637 seconds