• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemistry of Novel Expanded Porphyrins with Main Group Elements / 典型元素を用いた新奇な環拡張ポルフィリンの化学

Higashino, Tomohiro 23 July 2014 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(理学) / 乙第12840号 / 論理博第1542号 / 新制||理||1578(附属図書館) / 31423 / 京都大学大学院理学研究科化学専攻 / (主査)教授 大須賀 篤弘, 教授 丸岡 啓二, 教授 時任 宣博 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DGAM
2

Bifunctional Systems in the Chemistry of Frustrated Lewis Pairs

Zhao, Xiaoxi 08 January 2013 (has links)
Three classes of bifunctional compounds related to frustrated Lewis pair chemistry were studied. The first class, alkynyl-linked phosphonium borates, was strategically synthesized and the corresponding neutral alkynyl-linked phosphine boranes generated in solution. They were reacted with THF, alkenes and alkynes to undergo either ring-opening or multiple bond addition reactions, giving rise to zwitterionic macrocycles. In two select alkynyl-linked phosphonium borates, thermolysis resulted in unique rearrangements transforming the phosphino- and boryl-substituted alkynyl moieties into C4 chains. The alkynyl-linked phosphine boranes were further demonstrated to coordinate as η3-BCC ligands in Ni(0) complexes. The rigid nature of the coordination was confirmed by dimerization without cleavage of the Ni–B interaction upon the addition of acetonitrile or carbon monoxide. Moreover, reactions with Al-, Zn- and B-based Lewis acids prompted hydride transfer within the alkynyl-linked phosphonium borate and interesting functional group transfer reactions. The second class of the bifunctional systems, a series of gem-substituted bis-boranes, was subjected to reactions with tBu3P and CO2. The O-linked bis-borane was shown to coordinate the phosphino-carboxylate moiety with one B, while the methylene-linked bis-boranes were demonstrated to chelate the carboxyl group. The third bifunctional system class, vinyl-group tethered boranes, was examined to elucidate the mechanism of the frustrated Lewis pair addition reaction to olefins. Using a bis(pentafluorophenyl)alkylborane, the close proximity of the olefinic protons and the ortho-fluorine nuclei were evident by both NOE measurements and DFT calculations. Moreover, its reactions with phosphine bases suggested that an initial interaction between the highly electrophilic borane and the olefinic fragment precedes such frustrated Lewis pair addition reaction. Furthermore, a bis(pentafluorophenyl)alkoxyborane was synthesized and reacted with P-, N-, C- and H-based nucleophiles, demonstrating the wide range of Lewis bases that can be applied in olefin addition reactions with complementary regioselectivity.
3

Bifunctional Systems in the Chemistry of Frustrated Lewis Pairs

Zhao, Xiaoxi 08 January 2013 (has links)
Three classes of bifunctional compounds related to frustrated Lewis pair chemistry were studied. The first class, alkynyl-linked phosphonium borates, was strategically synthesized and the corresponding neutral alkynyl-linked phosphine boranes generated in solution. They were reacted with THF, alkenes and alkynes to undergo either ring-opening or multiple bond addition reactions, giving rise to zwitterionic macrocycles. In two select alkynyl-linked phosphonium borates, thermolysis resulted in unique rearrangements transforming the phosphino- and boryl-substituted alkynyl moieties into C4 chains. The alkynyl-linked phosphine boranes were further demonstrated to coordinate as η3-BCC ligands in Ni(0) complexes. The rigid nature of the coordination was confirmed by dimerization without cleavage of the Ni–B interaction upon the addition of acetonitrile or carbon monoxide. Moreover, reactions with Al-, Zn- and B-based Lewis acids prompted hydride transfer within the alkynyl-linked phosphonium borate and interesting functional group transfer reactions. The second class of the bifunctional systems, a series of gem-substituted bis-boranes, was subjected to reactions with tBu3P and CO2. The O-linked bis-borane was shown to coordinate the phosphino-carboxylate moiety with one B, while the methylene-linked bis-boranes were demonstrated to chelate the carboxyl group. The third bifunctional system class, vinyl-group tethered boranes, was examined to elucidate the mechanism of the frustrated Lewis pair addition reaction to olefins. Using a bis(pentafluorophenyl)alkylborane, the close proximity of the olefinic protons and the ortho-fluorine nuclei were evident by both NOE measurements and DFT calculations. Moreover, its reactions with phosphine bases suggested that an initial interaction between the highly electrophilic borane and the olefinic fragment precedes such frustrated Lewis pair addition reaction. Furthermore, a bis(pentafluorophenyl)alkoxyborane was synthesized and reacted with P-, N-, C- and H-based nucleophiles, demonstrating the wide range of Lewis bases that can be applied in olefin addition reactions with complementary regioselectivity.
4

The Preparation, Multinuclear Magnetic Resonance and Solid-State Investigation of Some Classically Bonded Anions of the Heavy Main-Group Elements Derived from Zintl Phases

Devereux, Lesley Ann 09 1900 (has links)
<p> The synthesis and X-ray crystallographic determination of solid derivatives of homo- and heteropolyatomic anions derived from Zintl phases has generally yielded the least soluble of the ions present in solution. Many other species present in these solutions have remained unidentified until recently when considerable effort directed towards the investigation of the solution chemistries of Zintl anions has been put forth.</p> <p> The present work is mainly concerned with the characterization of new Zintl anions in solution using multinuclear magnetic resonance spectroscopy as the primary investigative tool. These studies include (1) the tetrahedral SnCh4^4- (Ch = selenium and/or tellurium), (2) the dimer of SnSe3^2-, Sn2Se6^4-, (3) several interesting but, as-of-yet, unidentified species present in solutions derived from ternary Na/Sn/Te alloys and present in the reaction of Sn(II) Cl2 with Te2^2-, and (4) a set of possible multi-thallium-tellurium species. Relevant chemical shifts and nuclear spin-spin coupling constants are reported and trends discussed.</p> <p>119Sn Mössbauer investigations of all tin-containing species is also presented as is a brief discussion of the X-ray crystallographically determined polytelluride, Te4^2-.</p> / Thesis / Master of Science (MSc)
5

Synthesis of Metal-Rich Compounds of Group 15 Elements in Lewis-Acidic Ionic Liquids

Groh, Matthias Friedrich 12 January 2017 (has links) (PDF)
Chemical synthesis of materials is facing enormous challenges at the present time. The necessary transition toward more sustainable economic processes requires new materials as well as optimized production of well-established materials. However, inorganic materials (e.g., ceramics or alloys) are typically produced industrially by high-temperature processes at up to 2000 °C. A relatively new approach for inorganic synthesis is based on so-called ionic liquids. Ionic liquids (ILs) — often defined as salts with melting points below 100 °C[1] — are usually composed of sterically demanding organic cations and (often) polyatomic anions, which can be selected in order to tune the properties of the IL. Owing to the distinctive physicochemical properties of ILs (e.g., wide liquidus range, high redox and thermal stability, (usually) negligible vapor pressure, tunable polarity), they have gained interest for a wide range of applications. Among the numerous inorganic materials accessible in ILs have been remarkable examples, especially in main-group element chemistry. For instance, a new metastable modification of germanium in the clathrate-II structure[2] or the largest known naked, main-group element cluster [Sn36Ge24Se132]24– (“Zeoball”).[3] The introduction of Lewis-acidic ILs has enhanced the convenience of polycation syntheses and enabled substitution of carcinogenic or toxic substances like benzene, SO2, or AsF5.[4] A considerable number of polycations of group 15 or 16 elements has been synthesized in ILs. The utilization of an IL as reaction medium can be decisive for the composition, structure, and physical properties of the (polycationic) reaction product.[5] In order to broaden the knowledge on synthesis techniques for inorganic materials near ambient temperature based on ILs, this thesis aimed at two goals: • Explorative synthesis of new inorganic compounds in ILs • Elucidating the influence of ILs on product formation For these two goals, metal-rich (polycationic) compounds of group 15 were chosen as promising chemical system, owing to the effectiveness of alkylimidazolium-based Lewis-acidic ILs for the synthesis of this class of compounds. A variety of new polycationic compounds has been successfully synthesized in Lewis-acidic ILs based on 1-n-butyl-3-methylimidazolium (or 1-ethy-3-methylimidazolium) halides and halogenido-aluminates. Determination of the crystal structures by single-crystal X-ray diffraction enabled analysis of their bonding situation supported by quantum-chemical calculations. In general, the employed ILs enabled syntheses with a high selectivity for the yielded polycation. Depending on the investigated chemical system, the following parameters were pinpointed to have significant influence: • Choice of starting materials • Choice of cation as well as anion of the IL • Reaction temperature • Concentration of starting materials in the IL The investigations were supported by NMR spectroscopy, which led to the discovery of nanoparticles of red phosphorus. This finding may stimulate the development of an easily accessible, reactive form of phosphorus without the hazardous drawbacks of the white allotrope. In addition, in situ NMR measurements in ILs were proven a viable option for mechanistic investigations. Conventional solid-state reaction as well as ionothermal syntheses yielded the new layered compounds M2Bi2S3(AlCl4)2 (M = Cu, Ag), which can be interpreted as Bi2S3 molecules embedded in MAlCl4 salts. The choice of starting materials was found to have a crucial influence on the crystallized polytype. Omitting the IL hindered the formation of crystals suitable for single-crystal structure determination. The three new main-group element heteropolycations [Bi6Te4Br2]4+, [Bi3S4AlCl]3+, and [Sb13Se16]7+ as well as known [Bi4Te4]4+ has been synthesized under ionothermal conditions. The Lewis-acidic ILs proved to be exceptional solvents for elements and their halides, and likewise for Bi2S3 and Bi2Te3. Hence, these solvents are not only advantageous reaction media for pnictogen and chalcogen chemistry but also potential (selective but expensive) ore-processing agents. These excellent solvent capabilities extend to complex ternary compounds including heavy transition metals such as Bi16PdCl22 and elemental platinum. This gave rise to the synthesis of metal-rich salts containing [Bi10]4+ antiprisms with an endohedral palladium or, for the first time, platinum atom. Furthermore, the filled bismuth polycation [Rh@Bi9]4+ or the complex cluster [Rh2Bi12]4+ could be obtained from dissolution and conversion of Bi12−xRhX13–x (X = Cl, Br) depending on the employed IL. Real-space bonding analysis revealed that [Rh2Bi12]4+ acquires a unique standing between dative bonding by bismuth polyions and mixed clusters following Wade-Mingos rules. References [1] J. S. Wilkes, P. Wasserscheid, T. Welton, in Ionic Liquids in Synthesis (Eds.: P. Wasserscheid, T. Welton), Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 1–6. [2] A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, Nature 2006, 443, 320–323. [3] Y. Lin, W. Massa, S. Dehnen, J. Am. Chem. Soc. 2012, 134, 4497–4500. [4] E. Ahmed, D. Köhler, M. Ruck, Z. Anorg. Allg. Chem. 2009, 635, 297–300. [5] E. Ahmed, J. Beck, J. Daniels, T. Doert, S. J. Eck, A. Heerwig, A. Isaeva, S. Lidin, M. Ruck, W. Schnelle, et al., Angew. Chem. 2012, 124, 8230–8233; Angew. Chem. Int. Ed. 2012, 51, 8106–8109.
6

Synthesis of Metal-Rich Compounds of Group 15 Elements in Lewis-Acidic Ionic Liquids

Groh, Matthias Friedrich 21 December 2016 (has links)
Chemical synthesis of materials is facing enormous challenges at the present time. The necessary transition toward more sustainable economic processes requires new materials as well as optimized production of well-established materials. However, inorganic materials (e.g., ceramics or alloys) are typically produced industrially by high-temperature processes at up to 2000 °C. A relatively new approach for inorganic synthesis is based on so-called ionic liquids. Ionic liquids (ILs) — often defined as salts with melting points below 100 °C[1] — are usually composed of sterically demanding organic cations and (often) polyatomic anions, which can be selected in order to tune the properties of the IL. Owing to the distinctive physicochemical properties of ILs (e.g., wide liquidus range, high redox and thermal stability, (usually) negligible vapor pressure, tunable polarity), they have gained interest for a wide range of applications. Among the numerous inorganic materials accessible in ILs have been remarkable examples, especially in main-group element chemistry. For instance, a new metastable modification of germanium in the clathrate-II structure[2] or the largest known naked, main-group element cluster [Sn36Ge24Se132]24– (“Zeoball”).[3] The introduction of Lewis-acidic ILs has enhanced the convenience of polycation syntheses and enabled substitution of carcinogenic or toxic substances like benzene, SO2, or AsF5.[4] A considerable number of polycations of group 15 or 16 elements has been synthesized in ILs. The utilization of an IL as reaction medium can be decisive for the composition, structure, and physical properties of the (polycationic) reaction product.[5] In order to broaden the knowledge on synthesis techniques for inorganic materials near ambient temperature based on ILs, this thesis aimed at two goals: • Explorative synthesis of new inorganic compounds in ILs • Elucidating the influence of ILs on product formation For these two goals, metal-rich (polycationic) compounds of group 15 were chosen as promising chemical system, owing to the effectiveness of alkylimidazolium-based Lewis-acidic ILs for the synthesis of this class of compounds. A variety of new polycationic compounds has been successfully synthesized in Lewis-acidic ILs based on 1-n-butyl-3-methylimidazolium (or 1-ethy-3-methylimidazolium) halides and halogenido-aluminates. Determination of the crystal structures by single-crystal X-ray diffraction enabled analysis of their bonding situation supported by quantum-chemical calculations. In general, the employed ILs enabled syntheses with a high selectivity for the yielded polycation. Depending on the investigated chemical system, the following parameters were pinpointed to have significant influence: • Choice of starting materials • Choice of cation as well as anion of the IL • Reaction temperature • Concentration of starting materials in the IL The investigations were supported by NMR spectroscopy, which led to the discovery of nanoparticles of red phosphorus. This finding may stimulate the development of an easily accessible, reactive form of phosphorus without the hazardous drawbacks of the white allotrope. In addition, in situ NMR measurements in ILs were proven a viable option for mechanistic investigations. Conventional solid-state reaction as well as ionothermal syntheses yielded the new layered compounds M2Bi2S3(AlCl4)2 (M = Cu, Ag), which can be interpreted as Bi2S3 molecules embedded in MAlCl4 salts. The choice of starting materials was found to have a crucial influence on the crystallized polytype. Omitting the IL hindered the formation of crystals suitable for single-crystal structure determination. The three new main-group element heteropolycations [Bi6Te4Br2]4+, [Bi3S4AlCl]3+, and [Sb13Se16]7+ as well as known [Bi4Te4]4+ has been synthesized under ionothermal conditions. The Lewis-acidic ILs proved to be exceptional solvents for elements and their halides, and likewise for Bi2S3 and Bi2Te3. Hence, these solvents are not only advantageous reaction media for pnictogen and chalcogen chemistry but also potential (selective but expensive) ore-processing agents. These excellent solvent capabilities extend to complex ternary compounds including heavy transition metals such as Bi16PdCl22 and elemental platinum. This gave rise to the synthesis of metal-rich salts containing [Bi10]4+ antiprisms with an endohedral palladium or, for the first time, platinum atom. Furthermore, the filled bismuth polycation [Rh@Bi9]4+ or the complex cluster [Rh2Bi12]4+ could be obtained from dissolution and conversion of Bi12−xRhX13–x (X = Cl, Br) depending on the employed IL. Real-space bonding analysis revealed that [Rh2Bi12]4+ acquires a unique standing between dative bonding by bismuth polyions and mixed clusters following Wade-Mingos rules. References [1] J. S. Wilkes, P. Wasserscheid, T. Welton, in Ionic Liquids in Synthesis (Eds.: P. Wasserscheid, T. Welton), Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 1–6. [2] A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, Nature 2006, 443, 320–323. [3] Y. Lin, W. Massa, S. Dehnen, J. Am. Chem. Soc. 2012, 134, 4497–4500. [4] E. Ahmed, D. Köhler, M. Ruck, Z. Anorg. Allg. Chem. 2009, 635, 297–300. [5] E. Ahmed, J. Beck, J. Daniels, T. Doert, S. J. Eck, A. Heerwig, A. Isaeva, S. Lidin, M. Ruck, W. Schnelle, et al., Angew. Chem. 2012, 124, 8230–8233; Angew. Chem. Int. Ed. 2012, 51, 8106–8109.

Page generated in 0.3677 seconds