• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 13
  • 12
  • 12
  • 12
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Small molecule activation using electropositive metal N-heterocyclic carbene complexes

Turner, Zoe Rose January 2011 (has links)
The versatility of N-heterocyclic carbenes (NHCs) is demonstrated by numerous practical applications in homogeneous transition metal catalysis, organocatalysis and materials science. There remains a paucity of electropositive metal NHC complexes and so this chemistry is poorly developed with respect to that of the late transition metal and main group elements. This thesis describes the synthesis of new alkoxy-tethered NHC proligands, their use in the synthesis of reactive metal amide and metal alkyl complexes, and finally small molecule activation using these complexes. Chapter One introduces NHCs and discusses their use as supporting ligands for early transition metal and f-block complexes. Small molecule activation using organometallic complexes is examined alongside the use of electropositive metal NHC complexes in catalysis. Chapter Two contains the synthesis and characterisation of new alkoxy-tethered NHC proligands and a variety of electropositive MII (M = Mg and Zn), MIII (M = Y, Sc, Ce and U) and MIV (M = Ce and U) amide complexes. X-ray diffraction studies and a DFT study are used to probe the extent of covalency in the bonding of the MIV complexes. Chapter Three investigates the reactivity of the amide complexes prepared in Chapter Two. The MII complexes are shown to be initiators for the polymerisation of raclactide into biodegradable polymers. The MIII complexes are used to demonstrate additionelimination reactivity of polar substrates across the M-Ccarbene bond which allows the formation of new N-E (E = Si, Sn, P or B) bonds. Treatment of the UIII silylamide complex U(N{SiMe3}2)3 with CO results in the reductive coupling and homologation of CO to form an ynediolate core -OC≡CO- and the first example of subsequent reactivity of the ynediolate group. The MIV complexes are used to examine the potential for forming MIV cationic species and alkyl complexes. Chapter Four examines the synthesis of MIII (M = Ce and Sc) aminobenzyl complexes and MIII (M = Y, Sc and U) neosilyl and neopentyl alkyl complexes. The addition-elimination reactivity discussed in Chapter Three is extended to include C-E bond formation (E = Si, Sn, P, B, I or C). Chapter Five provides overall conclusions to the work presented within this thesis. Chapter Six gives experimental and characterising data for all complexes and reactions in this work.
2

Transition Metal Complexes and Main Group Frustrated Lewis Pairs for Stoichiometric and Catalytic P-P and H-H Bond Activation

Geier, Stephen 15 February 2011 (has links)
Stoichiometric and catalytic small molecule activation reactions are vital for the synthesis of new materials. The activation of phosphorus-hydrogen or phosphorus-phosphorus bonds allows for the facile synthesis of new phosphorus-containing molecules for a wide variety of applications.1 An investigation of the P-H dehydrocoupling reaction was undertaken utilizing two rhodium(I) based catalysts. Over the course of this investigation it was found that the Rh(I) systems were also active catalysts for the reverse reaction: phosphorus-phosphorus bond hydrogenation (and hydrosilylation). This reaction was exploited for the synthesis of novel phosphines from P-P bound species. Molecules with P-P bonds were reacted in a stoichiometric fashion with the catalyst precursor, producing a variety of novel species with interesting bonding features which shed some light on the reaction mechanism. Following the discovery in 2006 that a linked phosphine-borane system could reversibly activate hydrogen2 a tremendous effort has been put forth to understand and expand this unprecedented reactivity.3,4 This new archetype for metal-free small molecule activation, containing a bulky Lewis acid and Lewis base which are unable to bond directly due to steric repulsion, has been termed a “frustrated Lewis pair” (FLP).3,4 The FLP concept is expanded to include bulky P-P bound species, pyridines and P-O bound Lewis bases as partners for B(C6F5)3. In some cases small molecule activation produced ion pairs or zwitterions related to those found for reactions with tertiary phosphines,3,4 but in others novel reaction pathways were discovered including phosphorus-phosphorus bond cleavage, catalytic hydrogenations and the formation of novel intramolecular FLPs. An unexpected situation was observed for the pair of 2,6-lutidine with B(C6F5)3, where adduct formation was observed along with free Lewis acid and base, but H2 activation by the FLP proceeded smoothly. Covalently bound phosphinoboranes of the general formula R2PB(C6F5)2 are synthesized. While systems with small R groups dimerized, monomers existed for cases with bulkier R groups. These monomers were found to exhibit extraordinarily short phosphorus-boron bonds yet were still capable of H2 activation analogous to bimolecular phosphine-borane systems. These systems also showed unique reactivity with Lewis acids and Lewis bases. This work further demonstrates the broad and general utility of the FLP concept in the synthesis of new materials and in catalytic transformations.
3

Transition Metal Complexes and Main Group Frustrated Lewis Pairs for Stoichiometric and Catalytic P-P and H-H Bond Activation

Geier, Stephen 15 February 2011 (has links)
Stoichiometric and catalytic small molecule activation reactions are vital for the synthesis of new materials. The activation of phosphorus-hydrogen or phosphorus-phosphorus bonds allows for the facile synthesis of new phosphorus-containing molecules for a wide variety of applications.1 An investigation of the P-H dehydrocoupling reaction was undertaken utilizing two rhodium(I) based catalysts. Over the course of this investigation it was found that the Rh(I) systems were also active catalysts for the reverse reaction: phosphorus-phosphorus bond hydrogenation (and hydrosilylation). This reaction was exploited for the synthesis of novel phosphines from P-P bound species. Molecules with P-P bonds were reacted in a stoichiometric fashion with the catalyst precursor, producing a variety of novel species with interesting bonding features which shed some light on the reaction mechanism. Following the discovery in 2006 that a linked phosphine-borane system could reversibly activate hydrogen2 a tremendous effort has been put forth to understand and expand this unprecedented reactivity.3,4 This new archetype for metal-free small molecule activation, containing a bulky Lewis acid and Lewis base which are unable to bond directly due to steric repulsion, has been termed a “frustrated Lewis pair” (FLP).3,4 The FLP concept is expanded to include bulky P-P bound species, pyridines and P-O bound Lewis bases as partners for B(C6F5)3. In some cases small molecule activation produced ion pairs or zwitterions related to those found for reactions with tertiary phosphines,3,4 but in others novel reaction pathways were discovered including phosphorus-phosphorus bond cleavage, catalytic hydrogenations and the formation of novel intramolecular FLPs. An unexpected situation was observed for the pair of 2,6-lutidine with B(C6F5)3, where adduct formation was observed along with free Lewis acid and base, but H2 activation by the FLP proceeded smoothly. Covalently bound phosphinoboranes of the general formula R2PB(C6F5)2 are synthesized. While systems with small R groups dimerized, monomers existed for cases with bulkier R groups. These monomers were found to exhibit extraordinarily short phosphorus-boron bonds yet were still capable of H2 activation analogous to bimolecular phosphine-borane systems. These systems also showed unique reactivity with Lewis acids and Lewis bases. This work further demonstrates the broad and general utility of the FLP concept in the synthesis of new materials and in catalytic transformations.
4

The Activation of Small Molecules Employing Main Group and Transition Metal Frustrated Lewis Pairs

Neu, Rebecca C. 18 December 2012 (has links)
Combinations of sterically encumbered Lewis acids and Lewis bases are precluded from dative bond formation, failing to yield classical Lewis acid-base adducts. These unique systems are referred to as frustrated Lewis pairs (FLPs) and demonstrate a plethora of unique small molecule activations.Herein, the syntheses of phosphonium alkoxy- and aryloxyborate salts in addition to phosphonium thioborate salts are detailed. The scope of Lewis acid and base, alcohol and thiol, that are effective in this chemistry, is also detailed. The syntheses of novel borate and boronate esters of the form B(OR)3 and (C6R4O2)B(C6F5) are detailed and applied in metal-free heterolytic dihydrogen activation with phosphines. The further study of a variety of perfluoroboranes in the activation of H2 with tertiary phosphines is also detailed. Derivatization of triarylboranes, boronate esters, borinic esters and chloroboranes by reaction with one or two equivalents of alky- or aryldiazomethane is achieved yielding the corresponding RR’C insertion products. The solid-state structures of the free boranes, in addition to Lewis base adducts of a sampling of these species, are detailed. Reactivity of the resulting sterically encumbered boranes in imine hydrogenations, H2 and XeF2 activation are also detailed. Combinations of intermolecular frustrated Lewis pairs are found to react collaboratively to activate greenhouse gases such as carbon dioxide (CO2) and nitrous oxide (N2O), yielding the corresponding zwitterionic compounds R3P(CO2)BR2R’ and R3P(N2O)BR’3. Atom connectivity has been established via X-ray crystallographic studies and molecular structures and parameters are discussed. Subsequent exchange chemistry of both CO2 and N2O species with transition metal and other d-block Lewis acids are investigated and yield zwitterionic compounds and ion pairs which are otherwise unobtainable employing more conventional methods. Transition metal containing Lewis acids are employed in conjunction with tri(tert-butyl)phosphine for the FLP-mediated direct activation of N2O.
5

The Activation of Small Molecules Employing Main Group and Transition Metal Frustrated Lewis Pairs

Neu, Rebecca C. 18 December 2012 (has links)
Combinations of sterically encumbered Lewis acids and Lewis bases are precluded from dative bond formation, failing to yield classical Lewis acid-base adducts. These unique systems are referred to as frustrated Lewis pairs (FLPs) and demonstrate a plethora of unique small molecule activations.Herein, the syntheses of phosphonium alkoxy- and aryloxyborate salts in addition to phosphonium thioborate salts are detailed. The scope of Lewis acid and base, alcohol and thiol, that are effective in this chemistry, is also detailed. The syntheses of novel borate and boronate esters of the form B(OR)3 and (C6R4O2)B(C6F5) are detailed and applied in metal-free heterolytic dihydrogen activation with phosphines. The further study of a variety of perfluoroboranes in the activation of H2 with tertiary phosphines is also detailed. Derivatization of triarylboranes, boronate esters, borinic esters and chloroboranes by reaction with one or two equivalents of alky- or aryldiazomethane is achieved yielding the corresponding RR’C insertion products. The solid-state structures of the free boranes, in addition to Lewis base adducts of a sampling of these species, are detailed. Reactivity of the resulting sterically encumbered boranes in imine hydrogenations, H2 and XeF2 activation are also detailed. Combinations of intermolecular frustrated Lewis pairs are found to react collaboratively to activate greenhouse gases such as carbon dioxide (CO2) and nitrous oxide (N2O), yielding the corresponding zwitterionic compounds R3P(CO2)BR2R’ and R3P(N2O)BR’3. Atom connectivity has been established via X-ray crystallographic studies and molecular structures and parameters are discussed. Subsequent exchange chemistry of both CO2 and N2O species with transition metal and other d-block Lewis acids are investigated and yield zwitterionic compounds and ion pairs which are otherwise unobtainable employing more conventional methods. Transition metal containing Lewis acids are employed in conjunction with tri(tert-butyl)phosphine for the FLP-mediated direct activation of N2O.
6

Anionic Nitrogen Chelate Ligands: From Molecular Self-assembly to Small Molecule Activation

Annibale, Vincent Tony 16 July 2014 (has links)
This thesis examines the use of anionic nitrogen chelate ligands in coordination-driven self-assembly and small molecule activation. The two classes of anionic nitrogen chelate ligands that were explored are β-diiminate and 4,5-diazafluorenide derivatives. Chapter 2 deals with Pd β-diiminate chemistry. Chloro-bridged dimers served as versatile starting materials, and their reactivity toward pyridine and arylboronic acids was explored. An unusual transmetallation reaction with arylboronic acids triggered the self-assembly of tetrapallada-macrocycles. The formation of the self-assembled tetrapallada-macrocycles is through the generation of new Pd-C bonds. Chapter 3 deals with 4,5-diazafluorenide as an actor ligand in CO2 activation. A reversible formal insertion of CO2 into a remote ligand C-H bond was discovered. A variety of spectator metal centres were used to tune the reactivity of the actor ligand toward CO2. The spectator metal centre could even be replaced entirely with an organic group allowing for the first metal-free reversible tandem CO2 and C-H activation. Chapter 4 deals with the reactivity of dinuclear Rh 4,5-diazafluorenide-9-carboxylate complexes with dihydrogen in an attempt to reduce the trapped CO2 moiety. A series of stepwise stoichiometric reactions with H2, NMR experiments at low temperatures with added PPh3 or CO2, along with 13C-labelling experiments were conducted in an attempt to identify the products of this reaction and gain some mechanistic insight. Chapter 5 deals with using ambidentate 4,5-diazafluorene derivatives to synthesize linkage isomers, heterobimetallic complexes, and self-assembled macrocycles. The synthesis a new ligand family, 3,6-substituted 4,5-diazafluorene ligands is presented, along with coordination chemistry towards a {RuCp*}+ fragment. Finally in Chapter 6 the coordination chemistry of 3,6-diaryl substituted 4,5-diazafluorene derivatives was explored with the goal of generating low-coordinate species for the activation of small molecules, especially N2. The synthesis of the first trialkylborohydride complex of vanadium is presented.
7

Heteroleptic thorium terphenolate complexes for small molecule activation

McKinven, Jamie January 2016 (has links)
The chemistry and physical properties of actinide complexes has become increasingly significant and relevant since the dawn of the nuclear age. In addition to increasing the potency of nuclear power and the safety and disposal of its subsequent waste products, exploration of the chemistry of actinide complexes provides a fascinating insight into the increased complexity and divergence of reactivity of these complexes when compared to transition metal complexes. Chapter One provides a brief introduction to the chemistry of actinides and in particular, the major focus of this work, of thorium. This is followed by a survey of examples of rare examples of thorium complexes with a formal oxidation state other than Th (IV). Following this is a review of selected examples of thorium (IV) complexes exhibiting unusual reactivity surveying thorium hydride and alkyl complexes initially. This progresses into reviewing the chemistry of thorium complexes containing multiple bonds to non-metal atoms, beginning with carbon atoms and then progressing to atoms in the chalcogen and pnictogen groups. The introduction finishes with an investigation into the properties of the terphenolate ligands used in this study, including examples of unusual complexes that they have been shown to stabilise. In Chapter Two, an exploration into the catalytic activity of fairly simple actinide amide catalysts, N”2Th (IV) {k2-N(SiMe3)SiMe2CH2, N”2U (IV) {k2-N(SiMe3)SiMe2CH2} and UN”3, upon terminal acetylenes is presented. The chapter begins with a brief introduction summarising the previous reactivity observed in the catalysis of terminal acetylenes, with particular focus on actinide-based catalyst mediated reactions. The catalytic results on a variety of terminal acetylenes with different steric and electronic properties is then reported upon. It is found that high conversions and selectivities can be achieved upon optimisation of the catalytic process. It was also found that the different catalysts and substrates favoured different products, with selective oligomerisation and cyclotrimerisation reactions observed. The differing reactivities lend support to the role of f-electrons upon the catalytic route of the reaction. Conclusions are discussed at the end of the chapter. In Chapter Three, the synthesis and characterisation of heteroleptic terphenolate thorium chloride complexes and their subsequent reactivity was investigated. The synthesis and characterisation of ThCl2(OTerMes)2DME and ThCl2(OTerMes)2(H2O)3 are initially described. The reactivity of these complexes favoured transmetallation of the terphenolate ligands, with the complexes; [Li(OTerMes)THF]2, [Li(OTerMes)]2THF, μ3- (TerMesO)μ3-(CH2SiMe3)3Li4, LiAlH2(OTerMes)2, [(THF)K(OTerMes)]2, MgCl(OTerMes)(THF)2, MgBr(OTerMes)(THF)2 and Fe(OTerMes)2(py)2 synthesised and characterised from reactions attempting to transform the ancillary chlorido-ligands. The reactivity of ThCl2(OTerMes)2DME was found to not be solely transmetallation of the terphenolate ligands as elucidated by the synthesis and characterisation of [Th(OTerMes)2(Cl)2(4,4’- bipyridyl)1.5]∞ and [MgTh2μ2-Cl2μ3-Cl(OTerMes)2(C4H7)2μ-η3:η3(C4H7)H]. The synthesis of [MgTh2μ2-Cl2μ3-Cl(OTerMes)2(C4H7)2μ-η3:η3(C4H7)H] was found to proceed via a reductive elimination route with concomitant formation of a terphenolate transmetallation product Mg(OTerMes)2(THF)2. The formation of[Th(OTerMes)2(Cl)2(4,4’- bipyridyl)1.5]∞ was achieved via reaction with the Lewis base 4-4’ bipyridine. Reactions attempting to form heteroleptic uranium terphenolate complexes were also detailed. Conclusions are discussed at the end of the chapter. In Chapter Four, the synthesis and characterisation of heteroleptic terphenolate thorium borohydride complexes and their subsequent reactivity was investigated. It was found that the conversion of ThCl2(OTerMes)2DME to Th(BH4)2(OTerMes)2DME proceeded smoothly using a precedented reaction route. In contrast to ThCl2(OTerMes)2DME, reaction with a Lewis acid was found to result in abstraction of the solvating DME molecule, resulting in the synthesis and characterisation of Th(BH4)2(OTerMes)2. In similarity to ThCl2(OTerMes)2DME, Th(BH4)2(OTerMes)2DME was found to react with a Lewis base (4-4’ bipyridine) to form Th(BH4)2(OTerMes)2(4,4’ bipyridine)∞. However, despite the increased robustness and versatility of the borohydride complexes, transmetallation of the terphenolate complexes remained an issue as shown by the synthesis and characterisation of Mg(OTerMes)((μ-H)3BH)THF)2. Th(BH4)2(OTerMes)2 was found to be able to facilitate small molecule activation in a variety of substrates, encompassing CO, CO2 and CS2 amongst others. In most cases this small molecule activation favoured the formation of BMe3, with the concomitant formation of HB(OTerMes)2 in the case of CO2 and CS2. Attempts at catalysis of isonitriles and terminal acetylenes by Th(BH4)2(OTerMes)2 are presented with mixed results. Conclusions are discussed at the end of the chapter. In Chapter Five, investigations into the effects of changing the donor atom of the terphenyl moiety were probed. The chapter began by examining the differing properties of a phosphorous atom acting as a ligating atom, as opposed to the oxygen atom seen in Chapters Three and Four. The chapter continued by detailing the result of reactions attempting to synthesise and characterise terphenyl phosphino-actinide complexes. It was found that in the case of actinides with easily accessible lower oxidation states, i.e. U (IV), that reductive elimination was favoured, culminating in the isolation of (TerMesPH)2. Following this result attempts were made to modify the ligand system in an attempt to divert the reaction away from this product, in the hope of isolating a phosphino-actinide complex. Reactions attempting to ligate the terphenyl moiety via the aryl α-carbon to thorium were also detailed, resulting in radicular degeneration and the isolation of nBuTerTrip and ClTerTrip. Conclusions are discussed at the end of the chapter. Experimental and characterising data are provided in Chapter Six.
8

Macrocyclic 'Pacman' complexes for secondary coordination sphere control

Leeland, James William January 2011 (has links)
The work presented in this Thesis describes the design, synthesis and reactivity of a symmetric and various asymmetric Schiff-base macrocycles that are capable of forming a wedge-shaped “Pacman” conformation upon metal binding. Chapter One introduces catalysts for small molecule transformation as well as transition metal complexes of pyrrole-containing macrocycles. Further to this, Pacman systems, including previous work from Love and co-workers, and complexes capable of secondary coordination-sphere control will be discussed. Chapter Two details the design and synthesis of two asymmetric macrocycles that both contain one neutral and one N₄-donor imine-pyrrole binding pocket, H₂LP and H₂LNMe. The synthesis and characterisation of the series of complexes [M(LP)] and [M(LNMe)] (M = Pd, K₂, Co, VCl, TiCl, Mg, Fe and Mn) and their characteristics highlighted, including the formation of a supramolecular cyclic hexamer. Chapter Three presents the modification of the above ligands at the meso-group, the N-substituent and the non-pyrrolic binding pocket to give H2LFP and H₂LFNMe, H₂LNMes and H₂L(NH)NMe respectively. Palladium and cobalt complexes of these macrocycles were prepared and characterised. Chapter Four describes the design and synthesis of the ligand H₄LEt as well as the synthesis and characterisation of tin-alkyl and mononuclear calcium complexes of LEt, as well as the heterobimetallic complexes [SnMe₂(M)(THF)(LEt)] (M = Zn or Fe). The homobimetallic complexes [M₂(LEt)] (M = Co, Mg and NbCl) are also presented along with a magnesium-cubane structure of LEt in which the cubane is encapsulated by two, bowl-shaped macrocycles. Chapter Five provides a summary of the work presented in this thesis. Chapter Six describes the full experimental details and analytical data for all compounds synthesised in this work.
9

Bifunctional Systems in the Chemistry of Frustrated Lewis Pairs

Zhao, Xiaoxi 08 January 2013 (has links)
Three classes of bifunctional compounds related to frustrated Lewis pair chemistry were studied. The first class, alkynyl-linked phosphonium borates, was strategically synthesized and the corresponding neutral alkynyl-linked phosphine boranes generated in solution. They were reacted with THF, alkenes and alkynes to undergo either ring-opening or multiple bond addition reactions, giving rise to zwitterionic macrocycles. In two select alkynyl-linked phosphonium borates, thermolysis resulted in unique rearrangements transforming the phosphino- and boryl-substituted alkynyl moieties into C4 chains. The alkynyl-linked phosphine boranes were further demonstrated to coordinate as η3-BCC ligands in Ni(0) complexes. The rigid nature of the coordination was confirmed by dimerization without cleavage of the Ni–B interaction upon the addition of acetonitrile or carbon monoxide. Moreover, reactions with Al-, Zn- and B-based Lewis acids prompted hydride transfer within the alkynyl-linked phosphonium borate and interesting functional group transfer reactions. The second class of the bifunctional systems, a series of gem-substituted bis-boranes, was subjected to reactions with tBu3P and CO2. The O-linked bis-borane was shown to coordinate the phosphino-carboxylate moiety with one B, while the methylene-linked bis-boranes were demonstrated to chelate the carboxyl group. The third bifunctional system class, vinyl-group tethered boranes, was examined to elucidate the mechanism of the frustrated Lewis pair addition reaction to olefins. Using a bis(pentafluorophenyl)alkylborane, the close proximity of the olefinic protons and the ortho-fluorine nuclei were evident by both NOE measurements and DFT calculations. Moreover, its reactions with phosphine bases suggested that an initial interaction between the highly electrophilic borane and the olefinic fragment precedes such frustrated Lewis pair addition reaction. Furthermore, a bis(pentafluorophenyl)alkoxyborane was synthesized and reacted with P-, N-, C- and H-based nucleophiles, demonstrating the wide range of Lewis bases that can be applied in olefin addition reactions with complementary regioselectivity.
10

Exploring New Synthetic Routes to Frustrated Lewis Pairs

Tanur, Cheryl 25 August 2011 (has links)
Gold(I) and copper(I) imidazolium complexes were synthesized and probed for use as bulky Lewis acids in frustrated Lewis pairs (FLPs) with bulky phosphines and amines. Their reactivity with small molecules was investigated and the compounds were fully characterized by multinuclear NMR spectroscopy, elemental analysis and X-ray crystallography. Secondly, a new methylene-linked boron-sulfur Lewis acid was synthesized. Its thermodynamic properties were determined and its reactivity with terminal and internal alkynes was demonstrated. Adducts and heterocycles of this boron-sulfur system were fully characterized by multinuclear NMR spectroscopy, elemental analysis and X-ray crystallography. The application of these new systems for the activation of small molecules is described in this thesis.

Page generated in 0.14 seconds