• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 13
  • 12
  • 12
  • 12
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Exploring New Synthetic Routes to Frustrated Lewis Pairs

Tanur, Cheryl 25 August 2011 (has links)
Gold(I) and copper(I) imidazolium complexes were synthesized and probed for use as bulky Lewis acids in frustrated Lewis pairs (FLPs) with bulky phosphines and amines. Their reactivity with small molecules was investigated and the compounds were fully characterized by multinuclear NMR spectroscopy, elemental analysis and X-ray crystallography. Secondly, a new methylene-linked boron-sulfur Lewis acid was synthesized. Its thermodynamic properties were determined and its reactivity with terminal and internal alkynes was demonstrated. Adducts and heterocycles of this boron-sulfur system were fully characterized by multinuclear NMR spectroscopy, elemental analysis and X-ray crystallography. The application of these new systems for the activation of small molecules is described in this thesis.
12

Small Molecule Activation with Main Group Complexes

Dureen, Meghan Adrienne 16 March 2011 (has links)
The synthesis of monodentate biphenyl-amido proligands is reported as well as a series of complexes of lithium with these ligand systems. The solid-state molecular structure of these lithium amides are described as well as their use as synthons in the preparation of amido-arene aluminum complexes. Structural and spectroscopic data suggest that these species exhibit weak arene to metal donation. Attempts to generate aluminum cations from these species are detailed. A new synthetic route to titanium “constrained geometry” precatalysts was utilized to prepare a series of titanium complexes with similar pendant arene groups. The homopolymerization activity of these catalyst systems with ethylene and styrene is detailed. Combination of a sterically encumbered phosphine and large, electrophilic borane was used to effect heterolytic cleavage of disulfides to afford novel thiophosphoniumthioborate salts. A series of exchange reactions demonstrated the facile reversal of this reaction. Similar phosphine-borane systems are found to exhibit divergent reactivity with terminal alkynes, affording either phosphonium-alkynylborate salts from deprotonation or phosphonium-vinyl-borate zwitterions from addition. The scope of Lewis acid, Lewis base and alkyne combinations used to effect similar reactivity is detailed. It was found that the reaction of pyrroles, boranes, and alkynes formed similar addition products that were found to undergo further reactivity to afford C-vinyl pyrroles and nitrogen-boron bicyclic compounds. The synthesis of N-alkyl-bis(pentafluorophenyl)boryl amidinates is presented. The reactivity of these compounds with a variety of small molecules is reported. Reaction with CO2, CO, di-iso-propylcarbodiimide, tert-butyl isocyanide, and benzaldehyde as well as thermally-induced intramolecular rearrangement of these compounds affords a variety of novel nitrogen-boron heterocycles.
13

Small Molecule Activation with Main Group Complexes

Dureen, Meghan Adrienne 16 March 2011 (has links)
The synthesis of monodentate biphenyl-amido proligands is reported as well as a series of complexes of lithium with these ligand systems. The solid-state molecular structure of these lithium amides are described as well as their use as synthons in the preparation of amido-arene aluminum complexes. Structural and spectroscopic data suggest that these species exhibit weak arene to metal donation. Attempts to generate aluminum cations from these species are detailed. A new synthetic route to titanium “constrained geometry” precatalysts was utilized to prepare a series of titanium complexes with similar pendant arene groups. The homopolymerization activity of these catalyst systems with ethylene and styrene is detailed. Combination of a sterically encumbered phosphine and large, electrophilic borane was used to effect heterolytic cleavage of disulfides to afford novel thiophosphoniumthioborate salts. A series of exchange reactions demonstrated the facile reversal of this reaction. Similar phosphine-borane systems are found to exhibit divergent reactivity with terminal alkynes, affording either phosphonium-alkynylborate salts from deprotonation or phosphonium-vinyl-borate zwitterions from addition. The scope of Lewis acid, Lewis base and alkyne combinations used to effect similar reactivity is detailed. It was found that the reaction of pyrroles, boranes, and alkynes formed similar addition products that were found to undergo further reactivity to afford C-vinyl pyrroles and nitrogen-boron bicyclic compounds. The synthesis of N-alkyl-bis(pentafluorophenyl)boryl amidinates is presented. The reactivity of these compounds with a variety of small molecules is reported. Reaction with CO2, CO, di-iso-propylcarbodiimide, tert-butyl isocyanide, and benzaldehyde as well as thermally-induced intramolecular rearrangement of these compounds affords a variety of novel nitrogen-boron heterocycles.
14

Small Molecule Activation and Transformation using Aluminum-based Frustrated Lewis Pairs

Menard, Gabriel 09 August 2013 (has links)
While hundreds of papers have been published on frustrated Lewis pairs (FLPs) – the combination of bulky Lewis acids and bases which cannot form adducts – few of these use aluminum-based Lewis acids. The research outlined in this thesis expands the small molecule activation chemistry of FLPs to include Al.Combinations of bulky phosphines and AlX3 (X = halide or C6F5) with CO2 leads to the rapid activation to form the complexes R3P(CO2)(AlX3)2 (R = otol, Mes). Subsequent treatment with ammonia borane (AB) results in the rapid reduction of the CO2 fragment to methanol after water quench. Subsequent reactivity studies have established that AB adducts of AlX3, which react with CO2, are key intermediates in this chemistry. Further studies with Mes3P(CO2)(AlX3)2 revealed that these can reduce exogenous CO2 to CO, along with the generation of Mes3P(C(OAlX2)2O)(AlX3) and [Mes3PX][AlX4]. Detailed experimental and theoretical mechanistic investigations outline a possible mechanism involving direct CO2 insertion into free AlX3, followed by nucleophilic attack by PMes3 resulting in the expulsion of CO. Reactions with olefins were also investigated. While addition products of the type R3P(CH2CH2)AlX3 could be obtained with ethylene, C–H bond activation occurred with bulkier olefins. The resulting allyl species underwent subsequent C–C bond forming reactions with other olefins or CO2. Hydrogen was also activated using PR3/AlX3 FLPs to form species of the general formula, [R3PH][(H)(AlX3)2] (X = I, C6F5). These were found to reduce unactivated olefins, generating the redistributed products [R3PH][AlX4] and RAlX2 (R = alkyl). Attempts to circumvent this redistribution and favour alkyl protonation, thus generating a catalytic hydrogenation catalyst, are also discussed. Finally, the activation of N2O was also examined. While addition products could be formed, unexpected aromatic or benzylic C–H bond activation chemistry occurred in the presence of excess Al. A radical reaction pathway is proposed
15

Bifunctional Systems in the Chemistry of Frustrated Lewis Pairs

Zhao, Xiaoxi 08 January 2013 (has links)
Three classes of bifunctional compounds related to frustrated Lewis pair chemistry were studied. The first class, alkynyl-linked phosphonium borates, was strategically synthesized and the corresponding neutral alkynyl-linked phosphine boranes generated in solution. They were reacted with THF, alkenes and alkynes to undergo either ring-opening or multiple bond addition reactions, giving rise to zwitterionic macrocycles. In two select alkynyl-linked phosphonium borates, thermolysis resulted in unique rearrangements transforming the phosphino- and boryl-substituted alkynyl moieties into C4 chains. The alkynyl-linked phosphine boranes were further demonstrated to coordinate as η3-BCC ligands in Ni(0) complexes. The rigid nature of the coordination was confirmed by dimerization without cleavage of the Ni–B interaction upon the addition of acetonitrile or carbon monoxide. Moreover, reactions with Al-, Zn- and B-based Lewis acids prompted hydride transfer within the alkynyl-linked phosphonium borate and interesting functional group transfer reactions. The second class of the bifunctional systems, a series of gem-substituted bis-boranes, was subjected to reactions with tBu3P and CO2. The O-linked bis-borane was shown to coordinate the phosphino-carboxylate moiety with one B, while the methylene-linked bis-boranes were demonstrated to chelate the carboxyl group. The third bifunctional system class, vinyl-group tethered boranes, was examined to elucidate the mechanism of the frustrated Lewis pair addition reaction to olefins. Using a bis(pentafluorophenyl)alkylborane, the close proximity of the olefinic protons and the ortho-fluorine nuclei were evident by both NOE measurements and DFT calculations. Moreover, its reactions with phosphine bases suggested that an initial interaction between the highly electrophilic borane and the olefinic fragment precedes such frustrated Lewis pair addition reaction. Furthermore, a bis(pentafluorophenyl)alkoxyborane was synthesized and reacted with P-, N-, C- and H-based nucleophiles, demonstrating the wide range of Lewis bases that can be applied in olefin addition reactions with complementary regioselectivity.
16

Small Molecule Activation and Transformation using Aluminum-based Frustrated Lewis Pairs

Menard, Gabriel 09 August 2013 (has links)
While hundreds of papers have been published on frustrated Lewis pairs (FLPs) – the combination of bulky Lewis acids and bases which cannot form adducts – few of these use aluminum-based Lewis acids. The research outlined in this thesis expands the small molecule activation chemistry of FLPs to include Al.Combinations of bulky phosphines and AlX3 (X = halide or C6F5) with CO2 leads to the rapid activation to form the complexes R3P(CO2)(AlX3)2 (R = otol, Mes). Subsequent treatment with ammonia borane (AB) results in the rapid reduction of the CO2 fragment to methanol after water quench. Subsequent reactivity studies have established that AB adducts of AlX3, which react with CO2, are key intermediates in this chemistry. Further studies with Mes3P(CO2)(AlX3)2 revealed that these can reduce exogenous CO2 to CO, along with the generation of Mes3P(C(OAlX2)2O)(AlX3) and [Mes3PX][AlX4]. Detailed experimental and theoretical mechanistic investigations outline a possible mechanism involving direct CO2 insertion into free AlX3, followed by nucleophilic attack by PMes3 resulting in the expulsion of CO. Reactions with olefins were also investigated. While addition products of the type R3P(CH2CH2)AlX3 could be obtained with ethylene, C–H bond activation occurred with bulkier olefins. The resulting allyl species underwent subsequent C–C bond forming reactions with other olefins or CO2. Hydrogen was also activated using PR3/AlX3 FLPs to form species of the general formula, [R3PH][(H)(AlX3)2] (X = I, C6F5). These were found to reduce unactivated olefins, generating the redistributed products [R3PH][AlX4] and RAlX2 (R = alkyl). Attempts to circumvent this redistribution and favour alkyl protonation, thus generating a catalytic hydrogenation catalyst, are also discussed. Finally, the activation of N2O was also examined. While addition products could be formed, unexpected aromatic or benzylic C–H bond activation chemistry occurred in the presence of excess Al. A radical reaction pathway is proposed
17

Activation of Nitric Oxide and Dioxygen at Diferrous Complexes with Compartmental Pyrazolate Ligand Scaffolds

Schober, Anne 18 August 2016 (has links)
No description available.
18

N2 Splitting and Functionalization in the Coordination Sphere of Rhenium

Scheibel, Isabel Christina 16 December 2016 (has links)
No description available.
19

Complexes de Dianions Géminés et Leurs Carbénoïdes pour l’Activation de PetitesMolécules / Geminal Dianionic Complexes and Their Corresponding Carbenoids for Small Molecule Activation

Ho, Samuel 29 April 2016 (has links)
Cette thèse décrit la synthèse de carbénoïdes métalliques et leur application vers l’activation de petites molécules et la réduction catalytique du CO2 par BH3.Le premier chapitre décrit la synthèse d’un nouveau ligand asymétrique Ph2P(S)CH2P(BH3)Ph2. Puis, les complexes monoanioniques et dianioniques de lithium et de magnésium ont pu être synthétisés. Leurs structures ont été résolves par diffraction des rayons X et calculées par DFT.Dans le deuxième chapitre, l'oxydation des complexes dianioniques Ph2P(S)CLi2P(BH3)Ph2 avec C2Cl6 et Ph2P(S)CMgP(BH3)Ph2 avec CBr4, a conduit à une insertion intramoléculaire B-H sans précédent de BH3 sur le carbone central via une espèce carbénoïde. Ensuite, le carbénoïde Ph2P(S)C(Cl)P(S)Ph2Li,fais une insertion intermoléculaire B-H avec BH3. Le mécanisme d’insertion B-H a été étudié par spectroscopie RMN et rationalisé par DFT, impliquant un état de transition avec concomitance de la rupture des liaisons B-H et C-Cl et formation des liaisons Li-Cl et C-H. Cela explique la facilité de l’insertion. Aussi, la tentative d'isolement du carbénoïde de magnésium intermédiaire a été décrite.La synthèse et la réactivité du carbénoïde bis(iminophosphoranyl) de lithium [Ph2P(NMes)C(Cl)P(NMes)Ph2Li] (Mes = 1,3,5-Me3C6H2 ) sont présentées dans le troisième chapitre. La réaction avec BH3 conduit à des espèces de boronium ClC{PPh2NMes}2BH2 et LiBH4.Le quatrième chapitre décrit l'utilisation du composé boronium comme l'un des meilleurs catalyseurs pour la réduction de CO2 par BH3. Un intermédiaire ClC{PPh2NMes}2BH{OC(O)H}, a pu être isolé et un mécanisme de cette transformation a été proposé.Enfin, au chapitre cinq, la synthèse d'une nouvelle espèce carbénoïde de lithium asymétrique (Ph2P(S)C(Cl)P(NMes)Ph2Li a été décrite. La réactivité avec BH3 a été étudiée et a donné une insertion B-H. / The thesis describes the synthesis of metal carbenoids and their application towards small molecule activation and the catalytic reduction of CO2 with borane.Chapter 1 describes the synthesis of a novel unsymmetric phosphonium-stabilized methane ligand, Ph2P(S)CH2P(BH3)Ph2. The monoanionic and dianionic lithium and magnesium derivatives were subsequently synthesized. Their electronic structures were elucidated by X-ray crystallography and DFT calculations.Chapter 2 reports the mild oxidation of the dianionic complexes Ph2P(S)CLi2P(BH3)Ph2,and Ph2P(S)CMgP(BH3)Ph2, with C2Cl6 and CBr4 respectively, which underwent an unprecedented intramolecular B-H insertion with BH3 into the central carbon via a carbenoid species, which readily dimerizes. In addition, the carbenoid Ph2P(S)C(Cl)P(S)Ph2Li, underwent a similar intermolecular B-H insertion with BH3 to form Ph2P(S)CBH2(H)P(S)Ph2. The mechanism of the B-H bond insertion was studied by NMR spectroscopy and DFT calculations, which shows the concerted bond breaking of a B-H and C-Cl bond and the bond forming of a Li-Cl and C-H bond. This accounts for the low energy required for the B-H insertion reaction. Moreover, the attempted isolation of the magnesium carbenoid intermediate was described.The synthesis and reactivity of bis(iminophosphoranyl)carbenoid Ph2P(NMes)C(Cl)P(NMes)Ph2Li (Mes = 1,3,5-Me3C6H2 )was presented in Chapter and reacted with BH3 yielding the boronium species. ClC(PPh2NMes)2BH2,Chapter 4 describes the application of the boronium species as one of the best catalyst for CO2 reduction by BH3. An intermediate ClC{PPh2NMes}2BH{OC(O)H}, was isolated and a mechanism of this transformation was proposed.Lastly, in chapter 5, the step wise synthesis of a novel unsymmetric carbenoid Ph2P(S)C(Cl)P(NMes)Ph2Li was described. The reactivity with BH3 was probed and showed a B-H insertion reaction.
20

Multi-electron reduction of sulfur and carbon disulfide using binuclear uranium(III) borohydride complexes

Arnold, P.L., Stevens, C.J., Bell, N.L., Lord, Rianne M., Goldberg, J.M., Nichol, G.S., Love, J.B. 10 March 2017 (has links)
yes / The first use of a dinuclear UIII/UIII complex in the activation of small molecules is reported. The octadentate Schiff-base pyrrole, anthracene-hinged ‘Pacman’ ligand LA combines two strongly reducing UIII centres and three borohydride ligands in [M(THF)4][{U(BH4)}2(m-BH4)(LA)(THF)2] 1-M, (M ¼ Li, Na, K). The two borohydride ligands bound to uranium outside the macrocyclic cleft are readily substituted by aryloxide ligands, resulting in a single, weakly-bound, encapsulated endo group 1 metal borohydride bridging the two UIII centres in [{U(OAr)}2(m-MBH4)(LA)(THF)2] 2-M (OAr ¼ OC6H2tBu3-2,4,6, M ¼ Na, K). X-ray crystallographic analysis shows that, for 2-K, in addition to the endo-BH4 ligand the potassium countercation is also incorporated into the cleft through h5-interactions with the pyrrolides instead of extraneous donor solvent. As such, 2-K has a significantly higher solubility in non-polar solvents and a wider U–U separation compared to the ‘ate’ complex 1. The cooperative reducing capability of the two UIII centres now enforced by the large and relatively flexible macrocycle is compared for the two complexes, recognising that the borohydrides can provide additional reducing capability, and that the aryloxide-capped 2-K is constrained to reactions within the cleft. The reaction between 1-Na and S8 affords an insoluble, presumably polymeric paramagnetic complex with bridging uranium sulfides, while that with CS2 results in oxidation of each UIII to the notably high UV oxidation state, forming the unusual trithiocarbonate (CS3)2 as a ligand in [{U(CS3)}2(m-k2:k2-CS3)(LA)] (4). The reaction between 2-K and S8 results in quantitative substitution of the endo-KBH4 by a bridging persulfido (S2)2 group and oxidation of each UIII to UIV, yielding [{U(OAr)}2(m-k2:k2-S2)(LA)] (5). The reaction of 2-K with CS2 affords a thermally unstable adduct which is tentatively assigned as containing a carbon disulfido (CS2)2 ligand bridging the two U centres (6a), but only the mono-bridged sulfido (S)2 complex [{U(OAr)}2(m-S (LA)] (6) is isolated. The persulfido complex (5) can also be synthesised from the mono-bridged sulfido complex (6) by the addition of another equivalent of sulfur. / EPSRC, European COST network

Page generated in 0.1142 seconds