1 |
The nitrogenous acid derivatives of ethyl malonate ...Kostalek, John Anton. January 1910 (has links)
Thesis (Ph. D.)--University of Illinois. / Vita.
|
2 |
The nitrogenous acid derivatives of ethyl malonate ...Kostalek, John Anton. January 1910 (has links)
Thesis (Ph. D.)--University of Illinois. / Vita.
|
3 |
Étude de la sorption du cadmium et du malonate sur la calcite : effets synergiques en système ternaire / Cadmium and malonate sorption by calcite : synergetic effects in the ternary systemLi, Zhenxuan 27 September 2010 (has links)
La sorption du cadmium sur la calcite est étudiée en système ternaire, en présence, simultanément d’un ligand organique (malonate) et du cadmium. D’abord nous avons étudié l’interaction entre le malonate et la calcite. L’influence du malonate sur la solubilité de la calcite, le signal du malonate en spectroscopie infrarouge et enfin la modélisation des isothermes d’adsorption par un modèle de complexation de surface à trois plans (CD-MUSIC) nous ont permis de proposer un modèle pour la spéciation du malonate à la surface de la calcite et d’estimer quantitativement l’adsorption. Ensuite, nous avons étudié la sorption du cadmium sur la calcite, respectivement en absence et en présence de malonate. En absence de malonate, l’adsorption du cadmium donne lieu à une isotherme classique, de valeurs connues. La modélisation néanmoins révèle quelques difficultés de paramètrage. L’étude de la sorption en réacteur à écoulement continu sous conditions proches de l’équilibre CaCO3-H2O-CO2 met en évidence une parfaite réversibilité adsorption/désorption du cadmium. Notons que aucune expérience de sorption ne dépassait une durée totale de 60 heures. En présence de malonate, expériences et modélisations indiquent un effet négatif du malonate sur la sorption du cadmium. La cinétique de sorption est notablement ralentie et le cadmium est, en partie, fixé plus fortement à la surface. Les résultats tendent à montrer que la présence de malonate ralentit considérablement l’atteinte d’un équilibre de sorption du cadmium sur la calcite. / The sorption of cadmium by calcite was studied in a ternary system, with an organic ligand (malonate) and cadmium simultaneously present in solution. First we studied the interaction between malonate and calcite. The influence of malonate on the solubility of calcite, malonate spectra in infrared spectroscopy, and the modelling of isotherms by a 3-plane surface complexation model (CD-MUSIC) allowed us to propose a model for the speciation of malonate at the surface of calcite and to estimate adsorption quantitatively. In a second step, we have studied the sorption of cadmium by calcite, without and with malonate respectively. When malonate was not present, cadmium sorption by calcite gave rise to an isotherm with known values. Modelling however revealed some difficulties with parametrisation. Studying sorption under continuous flow in a “Stirred Flow Through Reactor” under conditions close to CaCO3-H2O-CO2 equilibrium, showed perfectly reversible adsorption/desorption of cadmium. Note that sorption experiments were conducted over 15 to 60 hours at maximum. When malonate was present, experiments and modelling indicated that malonate reduced the sorption of cadmium. Sorption kinetics were significantly lower and cadmium, in part, sorbed more strongly on the calcite surface. The results tend to show that the presence of malonate slows down the reach of sorption equilibrium of cadmium with calcite.
|
4 |
FREE RADICAL POLYMERIZATION OF NOVEL COPOLYMER; ETHYLENE-CO-DIETHYL METHYLENE MALONATE COPOLYMERSFoster, Sydney 20 October 2021 (has links)
Ethylene copolymers are widely used as packaging materials, adhesives and specialty polymers for well-regarded cost savings, durability, chemical resistance, and hot melt character. This work examines the use of diester monomers known as malonates to determine the plausibility of utilizing an uncommon monomer class for producing novel ethylene copolymers. Ethylene is copolymerized with diethyl methylene malonate—a simple malonate representative of more complex and highly modified malonate monomers and macromers—to produce ethylene-co-diethyl methylene malonate in a range of molecular weights. Ethylene-co-diethyl methylene malonate is analyzed to determine physical properties such as glass transition temperature, chain length and monomer incorporation. Successful copolymerization occurred under a range of temperatures and pressures in tetrahydrofuran, diethyl carbonate, and dimethyl carbonate. The produced polymers were found to have a molecular weight of 15-46 kg/mol, a glass transition temperature of 7°C, a melting temperature of 108°C, and a cold crystallization temperature of 64°C. The high concentration of a radical source inhibitor in the diethyl methylene malonate monomer solution negatively impacted molecular weight and ethylene incorporation.
|
5 |
Characterization of the activities of trans-3-chloroacrylic acid dehalogenase and cis-3-chloroacrylic acid dehalogenase and malonate semialdehyde decarboxylase homologues : mechanism and evolutionary implicationsSerrano, Hector, doctor of pharmacy 05 September 2012 (has links)
Members of the tautomerase superfamily are characterized by a [beta-alpha-beta] structural fold motif as well as a catalytic N-terminal proline (Pro-1). Three members of the superfamily are involved in the degradation of the nematocide 1,3-dichloropopene; trans-3-chloroacrylic acid dehalogenase (CaaD), cis-3-chloroacrylic acid dehalogenase (cis-CaaD) and malonate semialdehyde decarboxylase (MSAD). CaaD and cis-CaaD are involved in the hydration of their respective 3-chloroacrylic acid isomers to generate malonate semialdehyde. Subsequently, MSAD is responsible for catalyzing the decarboxylation of malonate semialdehyde to generate acetaldehyde. All three of these enzymes contain an N-terminal proline (Pro-1) that functions as a general acid, in contrast to other tautomerase superfamily members, such as 4-oxalocrotonate tautomerase (4-OT) and macrophage migration inhibitory factor (MIF), where Pro-1 acts as a catalytic base. Two new members of the tautomerase superfamily have been cloned and characterized; FG41 MSAD, a homologue of MSAD from Coryneform Bacterium strain FG41, and Cg10062, a homologue of cis-CaaD from Corynebacterium glutamicum, with low-level cis-CaaD and CaaD activities. As part of an effort to delineate the mechanisms of CaaD, cis-CaaD and Cg10062, secondary activities for all three enzymes were characterized. The three enzymes function as efficient phenylpyruvate tautomerases (PPT), converting phenylenolpyruvate to phenylpyruvate. The activity also indicates that the active site of these three enzymes can ketonize enol compounds, thereby providing evidence for the presence of an enediolate intermediate. The characterization of FG41 MSAD uncovered an activity it shares with MSAD. FG41 MSAD catalyzes the hydration of 2-oxo-3-pentynoate, but at a rate that is 50-fold less efficient than that of MSAD (as assessed by kcat/Km values). Mutagenesis studies of FG41 MSAD revealed that a single mutation resulted in a 8-fold increase in the activity. The characterization of Cg10062 and attempts to enhance the low-level cis-CaaD activity demonstrated the need for a bacterial screen that could screen a library of mutants. The resulting bacterial screen could be used to screen other members of the superfamily for dehalogenase activity. An in-depth exploration of the Cg10062 and FG41 MSAD activities may lead to a better understanding of the mechanism of cis-CaaD and MSAD and further delineate the evolutionary pathway for the tautomerase superfamily. / text
|
6 |
Carboxylates in the rhizosphere of chickpea (Cicer arietinum) in relation to P acquisitionWouterlood, Madeleine January 2005 (has links)
[Truncated abstract] The highly weathered, phosphorus-fixing soils of Western Australia require large amounts of P fertiliser to produce acceptable crop yields. Chickpea (Cicer arietinum L.) is an important leguminous crop that is increasingly used in rotations with wheat (Triticum aestivum L.), Western Australia’s major crop. Chickpea and a range of other species exude P-mobilising carboxylates into the rhizosphere. Plants that exude carboxylates may need less P fertiliser or may use P in the soil that is unavailable to other plants. There is a wealth of information about P mobilisation and carboxylate exudation by white lupin; in contrast, research on carboxylate exudation by chickpea is fairly limited. The major aim of this PhD research project was to investigate the relationships between exudation of carboxylates and soil and plant P status for chickpea ... In conclusion, whereas carboxylate exudation of plants such as white lupin is clearly targeted at P acquisition, chickpea showed constitutive carboxylate exudation mainly of malonate into the rhizosphere in a series of experiments, each with a different design. Unlike white lupin, chickpea forms associations with mycorrhizal fungi that may improve plant P status. Some of the functions of constitutive carboxylate exudation by chickpea may include P acquisition and deterring microorganisms, but the exact reasons and mechanisms remain unresolved.
|
7 |
Intramolecular cyclization strategies for synthesizing medium-ring polycycles and the total synthesis of natural productsPatil, Dadasaheb V. 16 August 2012 (has links)
Carbo- and heterocyclic compounds are of great interest to chemists. Intramolecular cyclization strategies of donor-acceptor (D-A) cyclopropanes and alkylidene malonate monoamides have excellent potential for synthesis as they offer easy access to structurally-diverse compounds. The work described in this thesis accesses the scope of the In(OTf)3-catalyzed cyclization reaction of cyclopropanes and alkylidene malonate monoamides. In(OTf)3-catalyzed reactions of alkenyl and heteroaryl cyclopropyl ketones were examined in the synthesis of functionalized cyclohexenone-based derivatives (Chapter 2). Subsequent efforts to utilize a tandem cyclopropane ring-opening/Friedel-Crafts alkylation sequence of methyl 1-(1H-indolecarbonyl)-1-cyclopropanecarboxylates to prepare functionalized hydropyrido[1,2-a]indole-6(7H)-ones is discussed in Chapter 3. The extension of this tandem protocol towards the total synthesis of (±)-deethyleburnamonine is the subject of Chapter 6. Intramolecular Friedel-Crafts alkylation of N-indolyl alkylidene malonate monoamides was also examined. An In(OTf)3-catalyzed cyclization of substituted methyl 2-(1H-indole-1-carbonyl) acrylates afforded a series of 1H-pyrrolo[1,2-a]indole-3(2H)-ones (Chapter 4), whereas substrates with the indole 2-position blocked provided access to substituted 4H-pyrrolo[3,2,1-ij]quinolin-4-ones (Chapter 5).
|
8 |
Efeito de intermediários do ciclo de krebs sobre alterações oxidativas induzidas por diferentes agentes oxidantes / Effect of krebs cycle intermediates on oxidative changes induced by different oxidant agentsPuntel, Robson Luiz 30 October 2006 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Recent data from the literature have suggested that some Krebs cycle intermediates could act as potent antioxidant agents, both in vitro and in vivo, against a variety of pro-oxidant agents. However, the mechanism(s) involved in the antioxidant effect of Krebs cycle intermediates are not fully understood. Additionally, there are scarce data in the literature taking into account the in vitro effect of Krebs cycle intermediates during oxidative stress conditions. Thus, the aim of this study was to determine the effect of some Krebs cycle intermediates on lipid peroxidation induced in vitro by different pro-oxidant agents, and the mechanism(s) by which they act. Firstly, we investigated the effect and the mechanism(s) by which malonate and quinolinic acid modulate the thiobarbituric acid- reactive species (TBARS) production in vitro, using rat brain S1 preparations (Article 1). The present results showed that the malonate-induced TBARS production was not changed by potassium cyanide or MK-801. However, the pro-oxidant effect of quinolinic acid was significantly prevented by MK-801. In addition we found that malonate was able to form complexes with iron ions (Fe2+), but these complexes were not able to interfere with in vitro deoxyribose degradation assays. Based on the results presented, we conclude that malonate pro-oxidant activity in vitro seems to be independent of the NMDA receptors activity. Additionally, we suggest that the malonate effect, in these conditions, is due to its ability to form complexes with iron ions, thus modulating an adequate ratio Fe2+/Fe3+ that could cause an increase in free radicals generation. In contrast, the quinolinic acid effect seems to be dependent of the NMDA receptors activation. However, we can not rule out the involvement of iron ions in quinolinic acid toxicity under our assay conditions. An other objective of this study was to investigate the effect of some Krebs cycle intermediates on quinolinic acid- or iron (Fe2+)-induced TBARS production in the rat brain S1 preparations, and the mechanism(s) by which they act (Article 2). The results showed that oxaloacetate, citrate, succinate, and malate were able to significantly prevent both basal and quinolinic acid- or iron-induced TBARS production. However, α-ketoglutarate induced per se a significant increase in basal TBARS production. The addition of potassium cyanide or the heat-treatment of S1 at 100ºC during 10 min completely abolished the antioxidant succinate activity, without change the effect of other Krebs cycle intermediates studied. Except for succinate, all intermediates used in this study were able to form complexes with iron (Fe2+) ions, however only oxaloacetate and α-ketoglutarate significantly prevented deoxyribose degradation induced by hydrogen peroxide. Based on the results presented, we concluded that oxaloacetate, malate, succinate, and citrate could act as antioxidants under basal, and under quinolinic acid- or iron- induced TBARS production, whereas α-ketoglutarate act as a pro-oxidant agent per se. The mechanism(s) by which citrate, malate, and oxaloacetate acts seems to be related to their ability to form complexes with iron (Fe2+) ions, thus modulating the iron redox cycle. In contrast, the succinate antioxidant effect seems to be dependent of the succinate dehydrogenase (SDH) activity. / Dados recentes na literatura têm relatado que alguns intermediários do ciclo de Krebs podem agir como potentes antioxidantes, tanto in vitro, quanto in vivo, em diversos sistemas pró-oxidantes. Porém, o(s) mecanismo(s) através dos qual(is) os intermediários do ciclo de Krebs exercem suas atividades antioxidantes não são completamente entendidas. Considerando a escassez de dados in vitro na literatura a respeito do efeito desses intermediários durante situações de estresse oxidativo, o presente trabalho tem como objetivo determinar o efeito de intermediários do ciclo de Krebs sob a peroxidação lipídica induzida por diferentes agentes pró-oxidantes in vitro, bem como investigar o(s) mecanismo(s) de ação dos mesmos. Primeiramente investigamos o efeito e o(s) mecanismo(s) pelo(s) qual(is) o malonato e o ácido quinolínico modulam a produção de espécies reativas ao ácido tiobarbitúrico (TBARS) em S1 de cérebro de ratos, in vitro (artigo 1). Os resultados obtidos mostraram um aumento na produção de TBARS induzido pelo malonato, o qual não foi modificado pela adição de cianeto de potássio, nem pelo MK-801. Por outro lado, o efeito pró-oxidante do ácido quinolínico foi significativamente prevenido pelo MK-801. Observamos ainda que o malonato foi capaz de formar complexos com íons ferrosos e que esses complexos não foram capazes de interferir nos ensaios da degradação da desoxirribose in vitro. Portanto, com base nos resultados encontrados, concluímos que o efeito pró-oxidante do malonato in vitro parece ser independente da atividade dos receptores NMDA. Os resultados sugerem que o efeito do malonato nessas condições deve-se principalmente a sua capacidade de interagir com íons ferro, modulando uma razão Fe2+/Fe3+ que favorece a geração de radicais livres. Por outro lado, o efeito do ácido quinolínico parece ser devido à ativação dos receptores NMDA. Porém, não podemos excluir a participação dos íons ferro para a toxicidade do mesmo nessas condições. Outro foco deste estudo foi investigar o efeito de alguns intermediários do ciclo de Krebs na produção de TBARS induzida por ácido quinolínico ou ferro em S1 de cérebro de ratos in vitro, bem como investigar o(s) mecanismo(s) de ação dos mesmos (artigo 2). Os resultados mostraram que o oxaloacetato, o citrato, o sucinato e o malato foram capazes de reduzir significativamente a produção de TBARS basal, bem como a induzida por ácido quinolínico ou ferro. Por outro lado, o α-cetoglutarato foi capaz de induzir per se um significativo aumento na produção de TBARS. A adição de cianeto de potássio, bem como o pré-tratamento do S1 por 10 min a 100ºC aboliram completamente o efeito antioxidante
do sucinato, sem interferir significativamente no efeito dos demais intermediários estudados. Todos os intermediários estudados, exceto o sucinato, foram capazes de quelar íons ferro, porém somente o oxaloacetato e o α-cetoglutarato foram capazes de prevenir a degradação da desoxirribose induzida por peróxido de hidrogênio. Com base nos resultados obtidos, podemos concluir que o oxaloacetato, o malato o sucinato e o citrato agem como antioxidantes sob condições basais ou em presença do ácido quinolínico ou ferro, enquanto que o α-cetoglutarato age como um agente pró-oxidante per se. O mecanismo pelo qual o citrato, o malato e o oxaloacetato exercem seus efeitos antioxidantes parece ser devido à capacidade desses em interagir com íons ferro modulando o ciclo redox desse. Por outro lado, o efeito do sucinato parece ser devido à atividade da enzima succinato desidrogenase (SDH).
|
9 |
Caracterização da atividade pró-oxidante de diferentes agentes e estudo do potencial antioxidante de intermediários do ciclo de krebs sobre alterações oxidativas induzidas in vitro / Effect of krebs cycle intermediates on oxidative changes induced by different oxidant agentsPuntel, Robson Luiz 02 May 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Previous data from the literature have shown that some Krebs cycle intermediates could act as antioxidant in several models, both in vitro and in vivo. However, the
mechanism(s) involved in the antioxidant effect of Krebs cycle intermediates are not fully understood. Additionally, there are scarce data in the literature taking into account the in
vitro effect of Krebs cycle intermediates during oxidative stress conditions. Thus, the aim of this study was to determine the effect of some Krebs cycle intermediates on lipid
peroxidation induced in vitro by different pro-oxidant agents, and the mechanism(s) by which they act. Furthermore, it was necessary elucidate the mechanisms by which the
different pro-oxidants acts under in vitro conditions. The present results showed that the malonate-induced TBARS production was not changed by potassium cyanide or MK-801.
However, the pro-oxidant effect of quinolinic acid was significantly prevented by MK-801. In addition we found that both malonate and oxalate were able to form complexes with iron ions (Fe2+). Based on the presented results, we conclude that malonate pro-oxidant activity in vitro seems to be independent of the secondary excitotoxicity via indirect NMDA
receptors activation. Additionally, we suggest that both the malonate and oxalate effect, in these experimental conditions, is due to its ability to form complexes with iron ions, thus
modulating an adequate ratio Fe2+/Fe3+ that could cause an increase in free radicals generation. In contrast, the quinolinic acid effect seems to be dependent of the NMDA receptors activation. However, we can not rule out the involvement of iron ions in quinolinic acid toxicity under our assay conditions. Another objective of this study was to investigate the effect of some Krebs cycle intermediates against either basal or induced TBARS production, using rat brain S1 preparations and the mechanism(s) by which they act. The results showed that oxaloacetate, citrate, succinate, and malate were able to
significantly prevent both basal and quinolinic acid-, iron- or malonate-induced TBARS production. On the other hand, fumarate prevented only malonate-induced TBARS
production, without effect under basal conditions. However, α-ketoglutarate induced per se a significant increase in basal TBARS production. The antioxidant activity of fumarate and
succinate were completely abolished when S1 was submitted to heat-treatment at 100ºC during 10 min. Likewise, potassium cyanide completely abolished the antioxidant effect of succinate. The effect of other Krebs cycle intermediates studied was unchanged with respect to heat-treatment, or cyanide. Except for succinate and fumarate, all intermediates
used in this study were able to form complexes with iron (Fe2+) ions, however only oxaloacetate and α-ketoglutarate significantly prevented deoxyribose degradation induced
by hydrogen peroxide. Based on the results presented, we concluded that oxaloacetate, malate, succinate, fumarate and citrate could act as antioxidants under such conditions,
whereas α-ketoglutarate acts as a pro-oxidant agent per se. The mechanism(s) by which citrate, malate, and oxaloacetate acts seems to be related to their ability to form complexes
with iron (Fe2+) ions, thus modulating the iron redox cycle. In contrast, the succinate and fumarate antioxidant effect seems to be dependent of the some enzymatic system. / Dados prévios da literatura têm mostrado que alguns intermediários do ciclo de Krebs podem agir como antioxidantes em diversos modelos, tanto in vitro, quanto in vivo. Porém, o(s) mecanismo(s) através dos qual(is) esses intermediários exercem suas atividades antioxidantes não são completamente entendidas. Considerando a escassez de dados na literatura a respeito do efeito dos intermediários do ciclo de Krebs durante situações de estresse oxidativo, o presente trabalho teve por objetivo determinar o efeito desses sob a peroxidação lipídica induzida por diferentes agentes pró-oxidantes in vitro, bem como investigar o(s) mecanismo(s) de ação dos mesmos. Além disso, faz-se necessário caracterizar o(s) mecanismos(s) pelo(s) qual(is) os diferentes pró-oxidantes agem nos sistemas in vitro. Os resultados dessa tese mostraram que a atividade pró-oxidante in vitro do malonato não foi modificada pela adição de cianeto de potássio, nem pelo MK-801. Por outro lado, o efeito pró-oxidante do ácido quinolínico foi significativamente prevenido pelo MK-801. Observamos ainda que o malonato, e também o oxalato foram capazes de formar complexos com íons ferrosos. Portanto, com base nos resultados encontrados, concluímos que o efeito pró-oxidante do malonato in vitro parece ser independente da excitotoxicidade secundária, conseqüência da ativação indireta dos receptores NMDA. Os resultados sugerem que o efeito do malonato e do oxalato nessas condições experimentais deve-se principalmente a sua capacidade de interagir com íons ferro, modulando uma razão
Fe2+/Fe3+ que favorece a geração de radicais livres. Por outro lado, o efeito do ácido quinolínico parece ser devido à ativação dos receptores NMDA. Porém, não podemos
excluir a participação dos íons ferro para a toxicidade do mesmo nessas condições. Outro foco deste estudo foi investigar o efeito de alguns intermediários do ciclo de Krebs na produção de TBARS basal ou induzida por diferentes pró-oxidantes em S1 de cérebro de ratos in vitro, bem como investigar o(s) mecanismo(s) de ação dos mesmos. Os resultados mostraram que o oxaloacetato, o citrato, o sucinato e o malato foram capazes de reduzir significativamente a produção de TBARS basal, bem como a induzida por ácido quinolínico, ferro ou malonato. O fumarato, por sua vez, teve efeito antioxidante somente sobre a produção de TBARS induzida. Por outro lado, o α-cetoglutarato foi capaz de induzir per se um significativo aumento na produção de TBARS. O efeito antioxidante do
fumarato e do sucinato foi completamente abolido quando o S1 foi submetido a um prétratamento por 10 min a 100ºC, enquanto que o efeito dos demais intermediários
permaneceu inalterado. Da mesma forma, a adição de cianeto de potássio aboliu completamente o efeito antioxidante do sucinato sem interferir significativamente no efeito
dos demais intermediários estudados. Todos os intermediários estudados, exceto o sucinato e o fumarato, foram capazes de quelar íons ferro, porém somente o oxaloacetato e o α-
cetoglutarato foram capazes de prevenir a degradação da desoxirribose induzida por peróxido de hidrogênio. Com base nos resultados obtidos, podemos concluir que o
oxaloacetato, o malato, o sucinato, o fumarato e o citrato agem como antioxidantes sob determinadas condições, enquanto que o α-cetoglutarato age como um agente pró-oxidante per se. O mecanismo pelo qual o citrato, o malato e o oxaloacetato exercem seus efeitos antioxidantes parece ser devido à capacidade desses em interagir com íons ferro modulando o ciclo redox desse. Por outro lado, o efeito do sucinato e do fumarato parece ser devido a alguma atividade enzimática.
|
10 |
Unique Reactivity Patterns of Enhanced Urea CatalystsNickerson, David M. 15 September 2014 (has links)
No description available.
|
Page generated in 0.0407 seconds