• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um método para melhoria de qualidade de imagens médicas utilizando a transformada wavelet

Docusse, Tiago Alexandre [UNESP] 28 May 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:29:40Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-05-28Bitstream added on 2014-06-13T20:48:22Z : No. of bitstreams: 1 docusse_ta_me_sjrp.pdf: 2737007 bytes, checksum: 136d52dde1692e02c17ad1383702808c (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O câncer de mama é uma das doenças que mais matam mulheres com idade acima de quarenta anos no Brasil atualmente. A fim de prevenir e tratar essa doença, o exame mais indicado é a análise de mamografias, imagens obtidas da mama fazendo uso de aplicações de raios-x, que podem indicar a presença ou não de tumores. Neste trabalho é apresentado um método para melhorar o contraste da imagem das mamas, classificando o formato de microcalcificações a fim de auxiliar médicos a decidir se este tumor é maligno. O método apresentado é baseado na transformada wavelet, que decompõe uma imagem em bandas de diferentes freqüências, permitindo a detecção destes objetos através da característica de freqüência deles. A utilização da família Symmlets gerou melhores resultados, tanto no realce da imagem de microcalcificações quanto na classificação das bordas desses objetos. / Breast cancer is one of the diseases that kills most of women older than forty in Brazil nowadays. In order to prevent and treat it, the most appropriate exam is the analysis of mammograms, images obtained from the breast by applying x-rays on it, indicating whether or not tumors are present. In this work a method to enhance breast images is presented, classifying the format of microcalcifications in order to help doctors decide whether or not this tumor is malign. The proposed method is based on the wavelet transform, which decomposes an image into different frequency bands, allowing the detection of these elements by their frequency features. Utilization of the Symmlets family achieved the best results, on the microcalcification image enhancement and on the classification of the borders of these elements.
2

PROCESSAMENTO E ANÁLISE DE SINAIS MAMOGRÁFICOS NA DETECÇÃO DO CÂNCER DE MAMA: Diagnóstico Auxiliado por Computador (CAD) / PROCESSING AND ANALYSIS OF MAMMOGRAPHIC SIGNALS IN THE DETECTION OF BREAST CANCER: Computer Aided Diagnosis (CAD)

Costa, Daniel Duarte 06 December 2012 (has links)
Made available in DSpace on 2016-08-16T18:18:41Z (GMT). No. of bitstreams: 1 Tese Daniel Duarte Costa.pdf: 3067192 bytes, checksum: b9a8d78583596a2e1dff6298c4a89014 (MD5) Previous issue date: 2012-12-06 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Breast cancer is the leading cause of cancer death among women in Western countries. To improve the accuracy of diagnosis by radiologists and doing it so early, new computer vision systems have been developed and improved with the passage of time. Some methods of the detection and classification of lesions in mammography images for computer systems diagnostic (CAD) were developed using different statistical techniques. In this thesis, we present methodologies of CADs systems to detect and classify mass regions in mammographic images, from two image databases: DDSM and MIAS. The results show that it is possible by these methods to obtain a detection rate of up to 96% of mass regions, using efficient coding technique and K-means clustering algorithm. To classify regions in mass or non-mass correctly, was obtained a success rate up to 90% using the independent component analysis (ICA) and linear discriminant analysis (LDA). From these results generated a web application, called SADIM (Sistema de Auxílio a Diagnóstico de Imagem Mamográfica), which can be used by any registered professional. / O câncer de mama é a principal causa de morte por câncer na população feminina dos países ocidentais. Para melhorar a precisão do diagnóstico por radiologistas e fazê-lo de forma precoce, novos sistemas de visão computacional têm sido criados e melhorados com o decorrer do tempo. Alguns métodos de detecção e classificação da lesão em imagens radiológicas, por sistemas de diagnósticos por computador (CAD), foram desenvolvidos utilizando diferentes técnicas estatísticas. Neste trabalho, apresentam-se metodologias de sistemas CADs para detectar e classificar regiões de massa em imagens mamográficas, oriundas de duas bases de imagens: DDSM e MIAS. Os resultados mostram que é possível, através destas metodologias, obter uma taxa de detecção de até 96% das regiões de massa, utilizando a técnica de codificação eficiente com o algoritmo de agrupamento k-means, e classificar corretamente as regiões de massa em até 90% utilizando-se das técnicas de análise de componentes independentes (ICA) e análise discriminante linear (LDA). A partir destes resultados gerou-se uma aplicação web, denominada SADIM (Sistema de Auxílio a Diagnóstico de Imagem Mamográfica), que pode ser utilizado por qualquer profissional cadastrado. Palavras-chave: processamento de imagens médicas; diagnóstico auxiliado por computador; mamografias análise de imagens; codificação eficiente.
3

Classificação de lesões em mamografias por análise de componentes independentes, análise discriminante linear e máquina de vetor de suporte / Classification of injuries in the Mamogram by Components of Independent Review, Analysis Discriminant Linear and Vector Machine, Support

DUARTE, Daniel Duarte 25 February 2008 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-08-14T18:15:08Z No. of bitstreams: 1 DanielCosta.pdf: 1087754 bytes, checksum: ada5f863f42efd8298fff788c37bded3 (MD5) / Made available in DSpace on 2017-08-14T18:15:08Z (GMT). No. of bitstreams: 1 DanielCosta.pdf: 1087754 bytes, checksum: ada5f863f42efd8298fff788c37bded3 (MD5) Previous issue date: 2008-02-25 / Female breast cancer is the major cause of death in western countries. Efforts in Computer Vision have been made in order to add improve the diagnostic accuracy by radiologists. In this work, we present a methodology that uses independent component analysis (ICA) along with support vector machine (SVM) and linear discriminant analysis (LDA) to distinguish between mass or non-mass and benign or malign tissues from mammograms. As a result, it was found that: LDA reaches 90,11% of accuracy to discriminante between mass or non-mass and 95,38% to discriminate between benign or malignant tissues in DDSM database and in mini-MIAS database we obtained 85% to discriminate between mass or non-mass and 92% of accuracy to discriminate between benign or malignant tissues; SVM reaches 99,55% of accuracy to discriminate between mass or non-mass and the same percentage to discriminate between benign or malignat tissues in DDSM database whereas, and in MIAS database it was obtained 98% to discriminate between mass or non-mass and 100% to discriminate between benign or malignant tissues. / Câncer de mama feminino é o câncer que mais causa morte nos países ocidentais. Esforços em processamento de imagens foram feitos para melhorar a precisão dos diagnósticos por radiologistas. Neste trabalho, nós apresentamos uma metodologia que usa análise de componentes independentes (ICA) junto com análise discriminante linear (LDA) e máquina de vetor de suporte (SVM) para distinguir as imagens entre nódulos ou não-nódulos e os tecidos em benignos ou malignos. Como resultado, obteve-se com LDA 90,11% de acurácia na discriminação entre nódulo ou não-nódulo e 95,38% na discriminação de tecidos benignos ou malignos na base de dados DDSM. Na base de dados mini- MIAS, obteve-se 85% e 92% na discriminação entre nódulos ou não-nódulos e tecidos benignos ou malignos respectivamente. Com SVM, alcançou-se uma taxa de até 99,55% na discriminação de nódulos ou não-nódulos e a mesma porcentagem na discriminação entre tecidos benignos ou malignos na base de dados DDSM enquanto que na base de dados mini-MIAS, obteve-se 98% e até 100% na discriminação de nódulos ou não-nódulos e tecidos benignos ou malignos, respectivamente.

Page generated in 0.0403 seconds