• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of noise on teleseismic T* estimation and attenuation tomography of the Yellowstone region

Adams, David C., 1952- 06 1900 (has links)
xv, 108 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Studies on seismic attenuation are an important complement to those on seismic velocity, especially when interpreting results in terms of temperature. But estimation of attenuation (t*) is more computationally involved and prone to contamination by noise, especially signal-generated noise. We have examined the effects of various forms of synthetic noise on t* estimation using time and frequency domain methods with varying window lengths and data frames of reference. We find that for S-waves, error due to noise can be reduced by rotating the data into the estimated polarization direction of the signal, but unless the exact nature of the noise is known, no method or window size is clearly preferable. We recommend the use of multiple estimation methods including a careful assessment of the uncertainty associated with each estimate, which is used as a weight during inversion for 1/Q. Our synthetic tests demonstrate that the misfit between actual and estimate-predicted traces or spectra correlates with t* error, and a similar relationship is suggested for real data. Applying this approach to data from the Yellowstone Intermountain Seismic Array, we employ two important constraints during inversion. First, we scale the misfit values so that the resulting weights are comparable in magnitude to the squares of the eventual data residuals. Second, we smooth the model so that the maximum attenuation (1/Q) does not exceed a value which would totally explain the observed velocity anomaly. The tomographic models from all the estimation methods are similar, but in the vicinity of the Yellowstone mantle plume, S-wave models show greater attenuation than do P-wave models. We attribute this difference to greater focusing by the plume of S-waves. All models show relatively high attenuation for the plume at depth, but above 250 km attenuation in the plume drops rapidly to values less than those of the surrounding mantle. We attribute this drop to the onset of partial melting, which dehydrates the olivine crystals, suppressing dislocation mobility and thereby attenuation. These attenuation models suggest excess plume temperatures at depth which are too low to support a plume origin in the lower mantle. This dissertation includes unpublished co-authored material. / Committee in charge: Eugene Humphreys, Chairperson, Geological Sciences; Emilie Hooft Toomey, Member, Geological Sciences; Douglas Toomey, Member, Geological Sciences; James Isenberg, Outside Member, Mathematics
2

Viscosity of fayalite melt at high pressure and the evolution of the Iceland mantle plume

Spice, Holly Elizabeth January 2016 (has links)
Part 1 The viscosity of silicate melts is a fundamental physical property that determines the mobility and transport behaviour of magma on the surface and in planetary interiors. The viscosity of liquid fayalite (Fe2SiO4), the Fe-rich end-member of the abundant upper mantle mineral olivine, was determined up to 9.2 GPa and 1850 °C using in situ falling sphere viscometry and X-ray radiography imaging. The viscosity of liquid fayalite was found to decrease with pressure both along the melting curve and an isotherm, with temperature having very little influence on viscosity at high pressure. This work is the first to determine the viscosity of a highly depolymerized silicate melt at high pressure as only recent advances in experimental techniques have allowed the difficulties associated with studying depolymerized liquids at high pressure to be overcome. The results are in contrast with previous studies on moderately depolymerized silicate melts such as diopside and peridotite which found viscosity to initially increase with pressure. In accordance with recent in situ structural measurements on liquid fayalite, the viscosity decrease is likely a result of the increase in Fe-O coordination with pressure. The results show that the behaviour of silicate melts at depth is strongly dependent on the melt structure and composition. Part 2 The magnitude of the thermal anomaly at hotspot locations has a fundamental influence on the dynamics of mantle melting and therefore has an important role in shaping the surface of our planet. The North Atlantic Igneous Province (NAIP) is the surface expression of a major mantle plume and is unique in the fact that it has a complete magmatic history. The highest 3He/4He volcanic rocks on Earth are found in the early NAIP picrites of West Greenland and Bafin Island and high 3He/4He rocks are still erupted on Iceland today. However, the relationship between 3He/4He and mantle plumes has remained enigmatic. The main aim of this work is to use the ideal opportunity provided by the NAIP to investigate the relationship between temperature, mantle melting dynamics and helium isotopes within a mantle plume. The magmatic temperatures of a suite of picrites and primitive basalts spanning the spatial and temporal range of the NAIP was determined using traditional olivine-melt thermometry, a forward mantle melting model and the newly developed Al-in-olivine thermometer. This study is the first to provide a detailed petrologic approach to investigating the mantle temperature of the NAIP throughout its magmatic history and is the first to compare all three techniques in detail. The Al-in-olivine thermometer was found to be the most robust proxy for mantle temperature. The early stage of volcanic activity in the NAIP is associated with the arrival of the ancestral Iceland plume head and resulted in a uniform temperature anomaly with Al-in-olivine temperatures 250-300° above that of ambient MORB across an area 2000 km in diameter. In addition, the temperature of the plume is shown to have been subject to large temperature fluctuations on a timescale of 107 years and is currently increasing, which has had profound effects on the melting dynamics and bathymetry of the North Atlantic region. Using existing and new 3He/4He measurements, no clear relationship between 3He/4He and temperature is observable. However, it is noted that the maximum 3He/4He of primitive basalts from the NAIP has decreased through time. These relationships are explicable if the high 3He/4He reservoir is located in either the core or the core-mantle boundary (CMB), from which helium diffuses into the lower mantle. The high 3He=4He signature is incorporated into a plume when it breaks away from the base of the mantle and over the lifetime of the plume, the 3He/4He source is gradually depleted. The temperature of the plume can vary independently in responses to heat flow at the CMB, which is in turn related to changes in mantle convection. Global plate tectonics and mantle processes are therefore intricately linked with melting dynamics at hotspot locations.
3

Integrating volatile and trace element geochemistry to evaluate sources of volcanism in oceanic and continental rift environments

Maletic, Erica Lynn 01 September 2022 (has links)
No description available.
4

Imaging the African superplume - upper mantle, tomography and moment tensor

Brandt, Martin Barend Christopher 01 October 2012 (has links)
Brandt, Martin B.C. 2011. Imaging the African Superplume – Upper mantle, Tomography and Moment tensor. Ph.D. thesis, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa. The African Superplume, African Superswell and East African Rift System are amongst the most prominent geophysical features on Earth, but the structure, evolution and interaction between these features is controversial. In my thesis I conducted a range of investigations in an effort to better understand these issues. The thesis presents the investigations into the structure and expressions of these features. These include: (I) A study of the upper mantle shear velocity structure beneath southern Africa to investigate the source of the buoyancy that has powered the Superswell; (II) Statistical hypothesis testing of middle-mantle shear velocity tomographic models to evaluate evidence for links between the Superplume and low velocity features in/near the transition zone; and (III) Computation of three new regional moment tensors for South Africa to assess crustal stress in the Kalahari craton, and its link with mantle structure and dynamics. Waveform data were obtained for the study on the upper mantle shear velocity structure and the moment tensor inversions from the Southern African Seismic Experiment Kaapvaal craton array. For the statistical hypothesis testing on global tomography images, new travel-time data from both global and AfricaArray stations were added to Grand’s global shear velocity data set. The principal findings of this study are summarized below. I. The upper mantle shear velocity structure beneath the Kalahari craton is similar to that of other shields, except for slightly slower velocities from 110–220 km depth. The difference may be due to higher temperatures or a decrease in magnesium number (Mg#). If the slower velocities in the deep lithosphere are due solely to a temperature anomaly, then slightly less than half of the unusually high elevation of the Kalahari craton can be explained by shallow buoyancy from a depleted hot lithosphere. Decreasing the Mg# of the lower lithosphere would increase density and counteract higher temperatures. If an excess temperature of 90 K over a 110 km depth range and a corresponding decrease in Mg# of -2 between the Kalahari and the other cratons are assumed, this would match the seismic velocity difference but would result in essentially no buoyancy difference. We conclude that the high elevation of the Kalahari craton can only be partially supported by shallow mantle buoyancy and must have a deeper source. We determined a thickness of 250±30 km for the mantle transition zone below eastern southern Africa, which is similar to the global average, but the corresponding velocity gradient is less steep than in standard global models (PREM and IASP91). Velocity jumps of 0.16±0.1 km/s (eastern) and 0.21±0.1 km/s (central) across the 410 km discontinuity were found. Our results indicate a thermal or chemical anomaly in the mantle transition zone, but this cannot be quantified due to uncertainty. II. Statistical hypothesis testing on our global tomography images indicated that the African Superplume rises from the core-mantle boundary to at least 1150 km depth, and the upper mantle slow-velocity anomaly extends from the base of the lithosphere to below the mantle transition zone. The model that links the African Superplume with the slow-velocity anomaly in the upper mantle under eastern Africa has an equal probability to an alternative hypothesis with a thin slow-velocity “obstruction zone” at 850 to 1000 km depth. III. Finally, we calculated three regional moment tensors for South Africa and made progress towards resolving the discrepancy between the local and moment magnitudes we observe for the region. Moment tensors/focal mechanisms in southern Africa change from normal faulting (extension) in the northeast near the East African Rift to strike-slip faulting in the southwest. This confirms previous studies stating that not only eastern Africa, but also southern Africa is being actively uplifted by lithospheric modification at its base and/or the African Superplume.
5

Neon, Helium and Argon isotope systematics of the Hawaiian hotspot

Mailer, Tina January 2009 (has links)
This study presents noble gas compositions (He, Ne, Ar, Kr, and Xe) of lavas from several Hawaiian volcanoes. Lavas from the Hawaii Scientific Drilling Project (HSDP) core, surface samples from Mauna Kea, Mauna Loa, Kilauea, Hualalai, Kohala and Haleakala as well as lavas from a deep well on the summit of Kilauea were investigated. Noble gases, especially helium, are used as tracers for mantle reservoirs, based on the assumption that high 3He/4He ratios (>8 RA) represent material from the deep and supposedly less degassed mantle, whereas lower ratios (~ 8 RA) are thought to represent the upper mantle. Shield stage Mauna Kea, Kohala and Kilauea lavas yielded MORB-like to moderately high 3He/4He ratios, while 3He/4He ratios in post-shield stage Haleakala lavas are MORB-like. Few samples show 20Ne/22Ne and 21Ne/22Ne ratios different from the atmospheric values, however, Mauna Kea and Kilauea lavas with excess in mantle Ne agree well with the Loihi-Kilauea line in a neon three-isotope plot, whereas one Kohala sample plots on the MORB correlation line. The values in the 4He/40Ar* (40Ar* denotes radiogenic Ar) versus 4He diagram imply open system fractionation of He from Ar, with a deficiency in 4He. Calculated 4He/40Ar*, 3He/22Nes (22NeS denotes solar Ne) and 4He/21Ne ratios for the sample suite are lower than the respective production and primordial ratios, supporting the observation of a fractionation of He from the heavier noble gases, with a depletion of He with respect to Ne and Ar. The depletion of He is interpreted to be partly due to solubility controlled gas loss during magma ascent. However, the preferential He loss suggests that He is more incompatible than Ne and Ar during magmatic processes. In a binary mixing model, the isotopic He and Ne pattern are best explained by a mixture of a MORB-like end-member with a plume like or primordial end-member with a fractionation in 3He/22Ne, represented by a curve parameter r of 15 (r=(³He/²²Ne)MORB/(³He/²²Ne)PLUME or PRIMORDIAL). Whether the high 3He/4He ratios in Hawaiian lavas are indicative of a primitive component within the Hawaiian plume or are rather a product of the crystal-melt- partitioning behavior during partial melting remains to be resolved. / Ozeaninselbasalte (OIBs), die durch Intraplatten-Vulkane gebildet werden wie z.B. Hawaii, sind geochemisch oft durch variable Isotopensignaturen charakterisiert, die verschiedene Mantelquellen widerspiegeln. Diese Variationen können über kurze Distanzen auf lokalem Maßstab auftreten. Im Rahmen dieser Arbeit wurden Edelgasisotopenzusammensetzungen (He, Ne, Ar, Kr, Xe) verschiedener hawaiianischer Vulkane ermittelt. Bohrkernproben vom Hawaii Scientific Drilling Project (HSDP), Oberflächenproben von den Vulkanen Mauna Kea, Mauna Loa, Kilauea, Hualalai, Kohala und Haleakala, sowie Proben aus einer Bohrung am Gipfel des Kilauea wurden untersucht. Edelgase, insbesondere Helium, dienen als geochemische Tracer. Dies ist auf der Annahme begründet, dass hohe 3He/4He Verhältnisse (> 8 RA) (RA ist das atmosphärische 3He/4He Verhältnis) Material aus dem tiefen Erdmantel repräsentieren, während niedrigere 3He/4He Verhältnisse (~ 8 RA) dem oberen Erdmantel entsprechen. Mauna Kea, Kohala und Kilauea Laven erreichten 3He/4He Verhältnisse zwischen 8 und 18 RA, während Haleakala Laven 3He/4He Verhältnisse von ~ 8 RA nicht überschreiten. Nur wenige Proben zeigten 20Ne/22Ne und 21Ne/22Ne Verhältnisse unterschiedlich vom Luftwert, was auf eine Herkunft aus dem tiefen Erdmantel schließen lässt. Edelgasisotopenwerte weisen auf eine Fraktionierung von He und Ar hin, mit einem Defizit an He. Berechnete 4He/40Ar*, 3He/22Nes (22NeS ist solares Ne) and 4He/21Ne Verhältnisse für die Proben sind niedriger als die entsprechenden Produktions- und primordialen Verhältnisse. Dies unterstützt die Beobachtung einer Fraktionierung von He gegenüber den schwereren Edelgasen, mit einer Verarmung von He gegenüber Ne und Ar. Ein beitragender Faktor bei der He Verarmung ist der löslichkeitskontrollierte Gasverlust während des Magmenaufstiegs. Der bevorzugte Verlust von He lässt jedoch auch darauf schließen, dass He sich bei magmatischen Prozessen inkompatibler verhält als Ne und Ar. Inwiefern die hohen 3He/4He Verhältnisse in hawaiianischen Laven ihren Ursprung in primitiven Komponenten innerhalb des hawaiianischen Plumes haben oder vielmehr in dem Verteilungsverhalten zwischen Mineralphase und Schmelze begründet sind, bleibt zu klären.
6

Geochemistry And Petrogenesis Of The Oceanic Island And Subduction-related Assemblages From The Palaeotethyan Karakaya Subduction/accretion Complex, Central And Nw Turkey

Sayit, Kaan 01 June 2010 (has links) (PDF)
The Nil&uuml / fer Unit of the Karakaya Complex at the pre-Liassic basement of the Sakarya Composite Terrane is composed mainly of metabasaltic lithologies with limestones, and minor cherts and mudstones. These metabasic assemblages show OIB- and E-MORB-type geochemical signatures with variable enrichment in the most incompatible elements relative to N-MORB. The Eymir Unit consists of variably deformed metaclastics, and constitutes the matrix in which the Nil&uuml / fer-type blocks are embedded. In the Ankara region, the Eymir Unit is intruded by metadiabase dikes that display intra-oceanic SSZ-type signatures with a marked negative Nb anomaly combined with a slightly depleted HFSE budget relative to N-MORB. The wide range in trace element ratios displayed by the Nil&uuml / fer metabasic rocks can be explained by melt-mixing processes that has taken place within the spinel-garnet transition zone. Pb-Nd-Hf radiogenic isotope systematics reveal that the Nil&uuml / fer samples has been derived from enriched mantle sources, and a multi-component source mixing is required to explain their genesis. The Eymir metadiabases, however, require contribution from a sediment component that mixes with a depleted mantle source. The geochemical data when combined with the geological and petrographical observations suggest that the Nil&uuml / fer metabasic rocks represent ancient oceanic islands that were created by a heterogeneous mantle plume rising beneath the Palaeotethyan oceanic lithosphere. During the latest Triassic, these oceanic islands were incorporated into a subduction/accretion prism, where they mixed with the continental-derived assemblages of diverse origin, creating the Karakaya Complex. The intrusion of the SSZ-type metadiabases postdates the formation and deformation of the Complex.
7

Petrogénesis y geocronología 40Ar/39Ar del volcanismo intraplaca de la Dorsal de Juan Fernández, Placa de Nazca, Pacífico SE

Reyes Vizcarra, Javier Antonio January 2018 (has links)
Doctor en Ciencias, Mención Geología / La Dorsal de Juan Fernández (JFR) es una cadena volcánica (~ 800 km) de intraplaca emplazada sobre la Placa de Nazca en el Pacífico SE alejada de márgenes activos. Mediante datos de geoquímica (roca total y mineral), isotópicos (Sr-Nd-Pb) y geocronológicos (40Ar/39Ar) se busca comprender los procesos petrogenéticos implicados en la generación del volcanismo y en la evolución magmática de JFR. Se determina que los 4 edificios volcánicos más volumétricos de JFR: O Higgins (~ 9.26 8.41 Ma), Alpha (~ 4.63 4.58 Ma), Robinson Crusoe (~ 4.10 3.40 Ma) y Alejandro Selkirk (~ 0.94 0.83 Ma); satisfacen una progresión de edades más joven hacia el W coherente con la teoría de plumas mantélicas. La fase de construcción del escudo representa casi la totalidad del volumen de los edificios estudiados, se compone principalmente de basaltos con signatura geoquímica (e.g., alto contenido de TiO2, alto FC3MS y anomalía TITAN) e isotópica (FOZO-A con participación adicional de DM) que sugiere la presencia de piroxenita (formada a partir de corteza oceánica reciclada) como heterogeneidad en una fuente mantélica peridotítica. Dicha presencia es confirmada mediante un modelo petrogénetico para la pluma que indica una baja temperatura potencial (rango de 1290 1322 °C para Robinson Crusoe vs. 1312 1362 °C en Alejandro Selkirk), presión de término de fusión (2.34 2.54 vs. 2.24 2.52 GPa) probablemente relacionado al límite litósfera-astenosfera, y una similar participación en el melt final de fundidos provenientes de piroxenita (38.6 56.4 vs. 35.8 55.6 wt%) pese a su baja presencia en la pluma (4 8 vs. 6 12 wt%). Las variaciones composicionales internas se explican por fraccionamiento de olivino + clinopiroxeno ± plagioclasa, mezcla y/o recarga magmática y acumulación de cristales de olivino en una cámara magmática somera (~ 1 a 3 kbar) donde la temperatura de los magmas puede descender hasta 1156 1181 °C, y las variaciones entre volcanes se explica por variaciones temporales en la temperatura potencial y tasa de fusión parcial de la pluma mantélica. O Higgins y Robinson Crusoe también muestran una fase de volcanismo rejuvenecido formada por coladas de lava basanítica eruptadas tras un periodo de inactividad máximo de ~ 0.25 Ma en O Higgins, y ~ 1.73 Ma en Robinson Crusoe. Su mayor enriquecimiento geoquímico y signatura isotópica relativamente similar al escudo confirman que también se origina a partir de una pluma mantélica, pero posiblemente con sutiles variaciones en la proporción de sus constituyentes (peridotita y piroxenita), temperatura y grado de fusión parcial (ambas menores a la etapa de escudo). Estos magmas ascienden de manera directa (> 1300 °C), capturando xenocristales, con cristalización polibárica y poca diferenciación, ya que solo algunas son almacenadas por breves periodos en pequeños reservorios someros (a ~ 1256 1295 °C).
8

Geochemistry of Zircon and Apatite in Rhyolites from the Central Snake River Plain: Genetic Implications

Gale, Chesley Philip 14 August 2023 (has links) (PDF)
Whole-rock and mineral compositions of three eruptive deposits from the Twin Falls caldera, associated with the Yellowstone hotspot, provide a window into melt generation and evolution for hot, dry, A-type rhyolites. Three rhyolitic units were sampled via the Kimberly drill-core as a part of project HOTSPOT, a study focused on mantle plume and continental lithosphere interaction. Previous work has been done to collect high resolution U-Pb zircon ages, and Hf- and O-isotopic compositions. This study examined the geochemistry of apatite and zircon along with host rock compositions in the context of this previous work. The Kimberly core sampled the Shoshone Rhyolite (6.06 Ma, 120 m thick), Kimberly Member (7.70 Ma, 169 m thick), and Castleford Crossing Member (7.96 Ma, >1400 m thick). Apatite compositions more closely reflect the composition of their whole rock hosts than zircons. SiO2 content is higher in apatite of the Kimberly Member at (1.1 ± 0.75 wt.%), vs (0.72 ± 0.47 wt.%) for the Castleford Crossing and (0.84 ± 0.27 wt.%) for the Shoshone Rhyolite. REEs compensate for Si substitution in these apatites, with the Kimberly Member most enriched. Volatile contents in the apatites are typical of metaluminous A-type rhyolites, with very low Cl and high F concentrations. Average Ti-in-zircon crystallization temperatures were highest in the Castleford Crossing Member (847 ± 68°C), followed by the Shoshone Rhyolite (806 ± 78°C), and then the Kimberly Member (804 ± 70°C). Oxygen fugacity calculated from zircons has average ΔQFM values for the Shoshone (0.8), Kimberly (-0.2), and Castleford Crossing (0.2). Hf concentrations and Eu anomalies are comparable in zircons from all three units. REE patterns in zircons are also similar and concentrations of REEs in the Shoshone and Kimberly units are similar even though the whole rock compositions of all three units are distinct. Less than 15% of zircons in the Kimberly and Castleford Crossing rhyolites have CL-dark cores enriched in several REEs, U, and Th. These CL-dark cored zircons are likely xenocrysts entrained from chemically evolved granite and then overgrown with less enriched rims prior to eruption. There are several apatite grains with Si-LREE enriched rims in the Kimberly Member, which serves as further evidence of assimilation of silicic igneous rock by the Kimberly Member before eruption. Principal component analysis of the geochemical data distinguishes between the units using both whole-rock and apatite compositions. However, zircon compositions are not statistically distinguishable using PCA. A global comparison of Ti, U, Th, Yb, and Nb concentrations in zircons show that the zircons in the Central Snake River Plain are similar to zircons in Hawaiian basalts, while younger zircons from Yellowstone formed in cooler more differentiated magma. We propose that the zircon and apatite chemical patterns and trends confirm the A-type origin of Snake River Plain rhyolites and make it unlikely that they represent partial melts of felsic continental crust but are instead derived in large part from partial melts of young mafic crust--the midcrustal sill.
9

How do mantle plumes help to thin and break up the lithosphere? / Comment un panache mantellique peut-il aider à diminuer la lithosphère ?

Agrusta, Roberto 12 December 2012 (has links)
On propose traditionnellement que les panaches mantelliques jouent un rôle important dans l'amincissement de la lithosphère. Des données sismologiques sous Hawaïi et Cape Verde suggèrent une limite lithosphère-asthénosphère (LAB) jusqu'à 50 km plus superficielle qu'autour. Des modèles numériques ont montré, en effet, qu'une convection à petite échelle (SSC, pour small-scale convection) dans la couche à faible viscosité formée à la base de la lithosphère par l'accumulation de la matière des panaches peut être un mécanisme efficace d'érosion du manteau lithosphérique. Cependant, ces modèles montrent que, si la plaque se déplace, l'érosion thermo-mécanique de la lithosphère ne dépasse pas 30 km. Afin de mieux étudier les interactions panache/lithosphère, et d'ainsi caractériser les paramètres contrôlant cette érosion, nous avons effectué des simulations numériques en 2D qui utilisent un modèle pétro-thermomécanique basé sur des approches en différences finies associées à des marqueurs actifs. Nous avons focalisé sur : (1) la dynamique de la SSC dans la couche à faible viscosité formée par étalement du panache à la base de la lithosphère et (2) l'effet de la fusion partielle sur cette dynamique. La plaque lithosphérique et le manteau sous-jacent sont caractérisés par une composition péridotitique homogène à viscosité newtonienne dépendante de la température et de la pression. Une vitesse constante, comprise entre 5 et 12,5 cm/an, est imposée au sommet de la plaque. Les panaches sont créés en imposant une anomalie thermique de 150 à 350 K en base du modèle (700 km de profondeur). La fusion partielle est calculée à partir d'un paramétrization des solidus et liquidus pour la fusion anhydre des péridotites. Nous modélisons la déplétion de la péridotite et son effet sur la fusion partielle en supposant que le degré de fusion ne peut qu'augmenter au cours du temps. Le liquide est accumulé jusqu'à un seuil et la masse fondue en excès est extraite instantanément. La rhéologie de la péridotite partiellement fondue est déterminée utilisant une constitutive relation basée sur un modèle de contiguïté, qui permet de prendre en compte les effets de la distribution de matière liquide à l'échelle de grain. La densité varie en fonction du degré de fusion partielle et de la déplétion du résidu solide. Nous analysons la cinématique du panache lors de son interaction avec une plaque mobile, la dynamique de la convection à petite-échelle (SSC) et le rajeunissement thermique de la lithosphère qui en résulte. Le temps de démarrage et la vigueur de la SSC et, par conséquent, le nouvel état d'équilibre thermique de la lithosphère à l'aplomb du panache dépendent du nombre de Rayleigh (Ra) dans la couche instable à la base de la lithosphère, qui est contrôlé par l'anomalie de température et la rhéologie dans cette couche. Pour des panaches chauds et vigoureux, le démarrage de la SSC ne dépend pas de la vitesse de la plaque. Pour des panaches plus faibles, le temps de démarrage diminue avec l'augmentation de la vitesse de la plaque. Ce comportement est expliqué par une différence dans la structure thermique de la lithosphère, due à des échanges diffusifs à la base lithosphère plus efficaces pour des panaches lents. La diminution de la viscosité associée à la présence de magma et la diminution de la densité du résidu solide accélèrent le démarrage et accroissent la vigueur de la SSC, entraînant une érosion plus efficace et plus proche du point d'impact de panache sous la lithosphère. / Mantle plumes are traditionally proposed to play an important role in thinning the lithosphere. Seismic images beneath Hawaii and Cape Verde, for instance, show a lithosphere-asthenosphere boundary (LAB) up to 50 km shallower than the surroundings. However, previous numerical modeling of plume-lithosphere interaction implies that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We used 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to further study the plume-lithosphere interaction. We focused on: (1) analyzing the dynamics of the small-scale convection (SSC) in the plume wake as a function of the plume vigor and plate velocity and (2) quantifying the effect of partial melting on this SSC. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using the batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the excess melt is instantaneously extracted. The rheology of the partially molten peridotite is determined using a viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. The density varies as a function of the melt fraction and of the depletion of the residue. We analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal rejuvenation of the lithosphere. The onset time and the vigor of SSC and, hence, the new equilibrium thermal state of the lithosphere atop the plume wake depends on the Rayleigh number (Ra) in the unstable layer at the base of the lithosphere, which is controlled by the temperature anomaly and rheology in the plume-fed layer. For vigorous, hot plumes, SSC onset times do not depend on plate velocity. For more sluggish plumes, SSC onset times decrease with increasing plate velocity. This behavior is explained by differences in the thermal structure of the lithosphere, due to variations in the spreading behavior of the plume material at the lithosphere base. Reduction of the viscosity in partial molten domains and decrease in density of the depleted residuum accelerate and enhance the vigor of small-scale convection in the plume-fed low-viscosity layer at the lithosphere base. It also reduces SSC onset times, leading to more effective erosion closer to the plume-lithosphere impact.
10

High-Resolution Imaging of Structure and Dynamics of the Lowermost Mantle

January 2012 (has links)
abstract: This research investigates Earth structure in the core-mantle boundary (CMB) region, where the solid rocky mantle meets the molten iron alloy core. At long wavelengths, the lower mantle is characterized by two nearly antipodal large low shear velocity provinces (LLSVPs), one beneath the Pacific Ocean the other beneath Africa and the southern Atlantic Ocean. However, fine-scale LLSVP structure as well as its relationship with plate tectonics, mantle convection, hotspot volcanism, and Earth's outer core remains poorly understood. The recent dramatic increase in seismic data coverage due to the EarthScope experiment presents an unprecedented opportunity to utilize large concentrated datasets of seismic data to improve resolution of lowermost mantle structures. I developed an algorithm that identifies anomalously broadened seismic waveforms to locate sharp contrasts in shear velocity properties across the margins of the LLSVP beneath the Pacific. The result suggests that a nearly vertical mantle plume underlies Hawaii that originates from a peak of a chemically distinct reservoir at the base of the mantle, some 600-900 km above the CMB. Additionally, acute horizontal Vs variations across and within the northern margin of the LLSVP beneath the central Pacific Ocean are inferred from forward modeling of differential travel times between S (and Sdiff) and SKS, and also between ScS and S. I developed a new approach to expand the geographic detection of ultra-low velocity zones (ULVZs) with a new ScS stacking approach that simultaneously utilizes the pre- and post-cursor wavefield.. Strong lateral variations in ULVZ thicknesses and properties are found across the LLSVP margins, where ULVZs are thicker and stronger within the LLSVP than outside of it, consistent with convection model predictions. Differential travel times, amplitude ratios, and waveshapes of core waves SKKS and SKS are used to investigate CMB topography and outermost core velocity structure. 1D and 2D wavefield simulations suggest that the complicated geographic distribution of observed SKKS waveform anomalies might be a result of CMB topography and a higher velocity outermost core. These combined analyses depict a lowermost mantle that is rich in fine-scale structural complexity, which advances our understanding of its integral role in mantle circulation, mixing, and evolution. / Dissertation/Thesis / Ph.D. Geological Sciences 2012

Page generated in 0.0487 seconds