• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Endothelin-1 Induced Phosphorylation of ERK1/2 in Bovine Corneal Endothelial Cells

Bethi, Akhila 01 August 2012 (has links)
The purpose of this study was to determine whether Endothelin-1 (ET-1) induced cellular responses in bovine corneal endothelial cells (BCECs) involves MAPK pathway by phosphorylating ERK1/2 protein kinase and to find out the phosphorylation patterns of ERK1/2 in confluent and sub-confluent cells. BCECs were isolated from bovine corneas and cultured in medium supplemented with 10% serum. Confluent (contact inhibited) and sub-confluent (actively growing cells) serum starved cells grown in T-75 flasks were treated with 10nM Endothelin-1. The control cells were left untreated. Total cellular protein was isolated using RIPA buffer and quantified according to the Peterson modification of the Lowry method. The level of expression of phosphorylated ERK1/2 (pp44, pp42) proteins relative to overall ERK1/2 (p44, p42) was determined by western blotting technique. Densitometry analysis of immunoblots revealed differential phosphorylation patterns in confluent and sub-confluent cultures. The pERK1/2 levels were significantly increased at 15 min and 24 hrs after post incubation with ET-1, whereas following the initial rise levels declined to 6hrs of incubation with ET-1 in confluent cultures. In sub-confluent cultures pERK1/2 levels increased gradually to 6hrs of incubation with ET-1, returning to pre-incubation levels at 24hrs. In conclusion, ET-1 treatment was shown to induce phosphorylation of ERK1/2 in BCEC. ET-1 treatment in confluent and sub confluent BCEC exhibited time dependent phosphorylation of ERK1/2. ET-1 treatment affected the phosphorylation pattern distinctively in confluent and sub-confluent BCEC. These observations led to the conclusion that ET-1 induced cellular events in BCEC may involve the MAPK cascade and that these ET-1 induced MAPK cascades may exhibit a negative feedback mechanism, suggested by a distinctive oscillations in pERK 1/2 levels. The contrasting effects of ET-1 in confluent and subconfluent cells may suggest a density dependent phosphatase activity.
2

Analysis of signal pathway protein-protein interactions during biotic and abiotic stress.

Malone, Jenna Moira January 2009 (has links)
The overall objective of the work described in this thesis was to characterise the three genes Hv14.3.3c, HvMAPKK1 and HvFKBP41, in terms of a role in defence and stress response signalling. These genes had previously been found to be differentially expressed in compatible versus incompatible interactions of barley with the fungus Rhynchosporium secalis, suggesting a possible role in the plant defence response, while current literature suggests these genes may also play a role in signal transduction, possibly under a broad range of stresses, including abiotic as well as biotic. Two main approaches were undertaken to characterise gene function: expression analysis and the identification of protein-protein interactions. To facilitate expression analysis, full length cDNA fragments of each gene were first obtained using bioinformatics, RACE and genomic walking techniques. Expression was then investigated using quantitative real-time RT-PCR. The results of the expression analysis confirmed that the candidate genes were in fact differentially expressed during infection, suggesting a role in the defence response of barley against R. secalis. Analysing their expression in the context of other stresses and treatments, namely frost, drought and ABA, indicated their role may not be limited only to biotic stress, but include abiotic stress as well. To investigate the possibility that these genes are involved in signalling during the defence response, protein-protein interaction techniques such as yeast two-hybrid and affinity pulldowns were used to identify interacting proteins in an attempt to place the genes within a known signalling network and build and extend on these networks. Y2H screening was used successfully to identify two putative interactors of Hv14.3.3c; an EPSP (5-enolpyruvylshikimate-3-phosphate) synthase and a putative wound-induced protein, and two interactors of HvFKBP41; a Rab-type GTPase and the same wound-induced protein. From what is known about the function of these genes in the literature, they fit well with a role in stress response signalling and the potential to be involved in signalling networks with the candidate gene products and also with each other. Through the trial of many different affinity pulldown techniques, a method for identifying interacting proteins from plant extracts was successfully established, however, issues with protein identification meant that interacting proteins were not identified using this technique. Steps were then made towards confirming the interactions identified using the Y2H system. Full length cDNA sequences of the identified interactors were obtained and expression analysis performed, in the aim of investigating co-expression patterns between the genes encoding the interacting proteins and the three candidate genes, to support a potential interaction. To confirm the Hv14.3.3c-HvEPSP interaction, co-immunoprecipitation and BRET were then used, however confirmation was unsuccessful due to issues with non-specific binding in co-immunoprecipitation and technical issues trying to establish the BRET analysis system in barley. In summary, the results of this study place the candidate genes Hv14.3.3c, HvMAPKK1 and HvFKBP41 as players in signal transduction during the plant defence/stress response. With the identification of previously uncharacterised protein interactions, some progress has also been made towards placing these genes within known signalling networks and identifying potential downstream genes that could possibly play a more specific role in defence response signalling and therefore be potential targets for the generation of resistant or stress tolerant plants. / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2009
3

Cell type-dependent differential activation of ERK by oncogenic KRAS or BRAF in the mouse intestinal epithelium

Brandt, Raphael 10 March 2023 (has links)
Kolorektale Karzinome (CRC) zeigen eine heterogene Ätiologie. Die Progression prämaligner Vorläufer zu CRC unterscheidet (U) sich in Morphologie, molekularen Veränderungen und Interaktion mit der Tumorumgebung. CRC weisen oft onkogene Mutationen in KRAS und BRAF auf. Diese steigern die MAPK Signalwegaktivität (Mpa). Obwohl sie im selben Signalweg wirken, sind KRAS und BRAF auf die CRC-Entitäten U verteilt. Dabei ist KRAS häufiger im sogenannten konventionellen und BRAF im serratierten Weg zu CRC mutiert. In dieser Studie nutzte ich murine intestinale Organoide (iO), die induzierbare (Ind) KRAS oder BRAF Onkogene exprimieren. Große U zwischen KRAS und BRAF zeigten sich sowohl in Signaltransduktion (ST) als auch im Phänotyp. Phosphoprotein-, ERK-Reporter-, scRNA-Seq und EM-Analysen ergaben eine starke Mpa durch BRAF, die zu hoher Expression von MAPK-Zielgenen und Verlust der epithelialen Integrität führte. iO nach KRAS-Ind blieben intakt, korrelierend mit moderater, zelltypspezifischer (ZS) Mpa in sekretorischen und undifferenzierten Zellen. Die meisten Enterozyten waren Mpa-negativ. ERK-Reporter zeigten: Das ZS Muster der Mpa ist nicht nur gegenüber KRAS, sondern auch dem Entzug von Wachstumsfaktoren stabil. Dies spricht für eine intrinsische, robuste Regulierung der Mpa. BRAF-Ind Mpa setzte die ZS Regulierung der MAPK außer Kraft und schädigte das Gewebe, im Einklang mit einer oberen Grenze tolerabler Mpa. Die ZS Mpa wurde in CRC-Zelllinien bestätigt, deren Mpa durch KRAS aber nicht BRAF U ausfiel. Ferner, nutzte ich iO mit bCatenin+KRAS-Ind, um den konventionellen Weg zu CRC zu modellieren. Die Kombination führte zu synergistischen Effekten, die sich in EGFR-unabhängigem Wachstum und der Aufhebung der ZS Mpa-Blockade äußerten, die durch eine Verschiebung der Differenzierung zu mehr Progenitorzellen bewirkt wurde. Zusammenfassend konnte ich U in der Mpa durch KRAS oder BRAF im Darmepithel feststellen, was dazu beiträgt, deren Rollen in der CRC-Genese zu bestimmen. / Colorectal cancer (CRC) is a disease with heterogeneous etiology. Premalignant lesions follow distinct routes of progression to carcinoma reflected by differences in morphology, molecular alterations and the tumor environment. Mutant KRAS and BRAF are frequent, leading to MAPK pathway activation (Mpa), which is relevant for CRC therapy. Despite acting in the same pathway, mutant KRAS and BRAF segregate to different entities, as KRAS is more frequent in the conventional- and BRAF being specific for the serrated route to CRC. I used murine intestinal organoids (iO) expressing inducible oncogenic KRAS or BRAF to study the impact of oncogenes in primary cells. I found marked differences in signal transduction and phenotype. Phospho-protein, ERK-reporter, scRNA-seq and EM data showed strong Mpa upon BRAF induction followed by ERK-target gene expression leading to tissue disruption. In contrast, KRAS left the tissue intact resulting in less and cell type-dependent Mpa limited to secretory cells, a subset of late-stage enterocytes and undifferentiated crypt cells. Most enterocytes were irresponsive to KRAS. The pattern of Mpa was robust towards KRAS or growth factor depletion arguing in favor of intrinsic, resilient MAPK regulation. In iO, BRAF-induced Mpa could break this cell type-specific regulation, indicating an upper limit of tolerable Mpa. I validated these findings in CRC cell lines that differed in Mpa in response to oncogenic KRAS but not BRAF. Finally, I used iO expressing an inducible form of stabilized bCatenin in combination with KRAS to mimic events frequently found in the conventional pathway to CRC. Expression of KRAS and bCatenin synergized in driving EGFR independent growth and breaking the villus-specific block of Mpa by altering differentiation towards progenitor cell types. In summary, this study emphasizes differences between Mpa induced by oncogenic KRAS or BRAF which helps clarifying their nature in different etiological routes to CRC genesis.

Page generated in 0.0219 seconds