Spelling suggestions: "subject:"marching square""
1 |
JavaScript och web workers : Parallellisering av en beräkningstung webbapplikation / JavaScript and web workers : Parallelization of a computationally heavy web applicationStråhle, Jesper January 2013 (has links)
Webben används i allt större utsträckning som en riktig applikationsplattform, mycket tack vare HTML5. Detta ställer högre krav på webbapplikationens prestanda på klientsidan, då nya tekniker möjliggör mer avancerade applikationer. Parallellisering är en metod för att öka prestandan i applikationer, som dessutom tar nytta av de parallella arkitekturer som idag är vanliga. Web workers – ett nytt API för JavaScript – tillåter en enkel form av parallellisering för webbapplikationer. Dock har web workers en del begränsningar som minskar antalet möjliga strategier. Detta arbete syftar till att utvärdera hur valet av parallelliseringsstrategi påverkar prestandan hos en JavaScript-implementation av marching squares – en algoritm med goda möjligheter för parallellisering. Tre olika strategier implementeras, och utvärderas därefter genom prestandamätning. Resultaten visar att en strategi som använder så lite och så optimerad kommunikation som möjligt ger bättre prestanda än en strategi med mer kommunikation. Vidare arbete för att bland annat utvärdera vinsterna av delat minne föreslås.
|
2 |
Development Of A Multigrid Accelerated Euler Solver On Adaptively Refined Two- And Three-dimensional Cartesian GridsCakmak, Mehtap 01 July 2009 (has links) (PDF)
Cartesian grids offer a valuable option to simulate aerodynamic flows around complex geometries such as multi-element airfoils, aircrafts, and rockets. Therefore, an adaptively-refined Cartesian grid generator and Euler solver are developed. For the mesh generation part of the algorithm, dynamic data structures are used to determine connectivity information between cells and uniform mesh is created in the domain. Marching squares and cubes algorithms are used to form interfaces of cut and split cells. Geometry-based cell adaptation is applied in the mesh generation. After obtaining appropriate mesh around input geometry, the solution is obtained using either flux vector splitting method or Roe&rsquo / s approximate Riemann solver with cell-centered approach. Least squares reconstruction of flow variables within the cell is used to determine high gradient regions of flow. Solution based adaptation method is then applied to current mesh in order to refine these regions and also coarsened regions where unnecessary small cells exist. Multistage time stepping is used with local time steps to increase the convergence rate. Also FAS multigrid technique is used in order to increase the convergence rate. It is obvious that implementation of geometry and solution based adaptations are easier for Cartesian meshes than other types of meshes. Besides, presented numerical results show the accuracy and efficiency of the algorithm by especially using geometry and solution based adaptation. Finally, Euler solutions of Cartesian grids around airfoils, projectiles and wings are compared with the experimental and numerical data available in the literature and accuracy and efficiency of the solver are verified.
|
Page generated in 0.0584 seconds